• 제목/요약/키워드: Arc-length method

검색결과 182건 처리시간 0.023초

Geometrically nonlinear elastic analysis of space trusses

  • Tin-Loi, F.;Xia, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.345-360
    • /
    • 1999
  • A general framework for the nonlinear geometric analysis of elastic space trusses is presented. Both total Lagrangian and finite incremental formulations are derived from the three key ingredients of statics, kinematics and constitutive law. Particular features of the general methodology include the preservation of static-kinematic duality through the concept of fictitious forces and deformations, and an exact description for arbitrarily large displacements, albeit small strain, that can be specialized to any order of geometrical nonlinearity. As for the numerical algorithm, we consider specifically the finite incremental case and suggest the use of a conventional, simple and flexible arc-length based method. Numerical examples are presented to illustrate and validate the accuracy of the approach.

자속 집중형 Spoke Type 영구자석 BLDC 전동기의 자기회로 및 특성 해석 (Magnetic Circuit and Characteristics of A flux Concentrated Spoke Type. Permanent Magnet BLDC Motor)

  • 강규홍;이병국;허진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.135-142
    • /
    • 2004
  • In this paper, the magnetic circuit characteristics and the current/torque analysis of a Spoke Type permanent magnet motor have been researched, compared with the SPM Type motor. In the magnetic circuit analysis, the characteristic of air-gap flux density has been analyzed according to the variation of the number of pole and the ratio of magnet height to arc length using finite element method and circuit equations. Moreover, the electromagnetic and the reluctance torque have been analyzed by the current profile, which is obtained from the variation of turn-on angle, and these informative data has been utilized for the overall characteristics of the Spoke Type BLDC motor.

실험에 의한 직교류홴의 유량 및 소음 분석 (Experimental Study on the Design Parameter Effects on the Flow-rate and the Noise level in a Cross-flow Fan)

  • 안철오;류호선
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.41-48
    • /
    • 1998
  • This study was carried out to investigate the effect of design parameters on the volume flow-rate and the noise level and to finally find the optimal design variables. Eighteen cross-flow fans were designed by the method of orthogonal array, and the flow-rate and the noise level were measured. These data were analyzed by the neural network system. The effects of eight design variables(scroll exit angle, scroll arc length et al.) on the fan performance and the noise level were valuated and discussed. This experiment shows that the design solutions suggested by neural network system may increase its volume flow-rate and reduce noise simultaneously.

  • PDF

A Projected Exponential Family for Modeling Semicircular Data

  • Kim, Hyoung-Moon
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1125-1145
    • /
    • 2010
  • For modeling(skewed) semicircular data, we derive a new exponential family of distributions. We extend it to the l-axial exponential family of distributions by a projection for modeling any arc of arbitrary length. It is straightforward to generate samples from the l-axial exponential family of distributions. Asymptotic result reveals that the linear exponential family of distributions can be used to approximate the l-axial exponential family of distributions. Some trigonometric moments are also derived in closed forms. The maximum likelihood estimation is adopted to estimate model parameters. Some hypotheses tests and confidence intervals are also developed. The Kolmogorov-Smirnov test is adopted for a goodness of t test of the l-axial exponential family of distributions. Samples of orientations are used to demonstrate the proposed model.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Distortional effect on global buckling and post-buckling behaviour of steel box beams

  • Benmohammed, Noureddine;Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.717-727
    • /
    • 2020
  • The homotopy perturbation method (HPM) to predict the pre- and post-buckling behaviour of simply supported steel beams with rectangular hollow section (RHS) is presented in this paper. The non-linear differential equations solved by HPM derive from a kinematics where large twist and cross-sections distortions are considered. The results (linear and non-linear paths) given by the present HPM are compared to those provided by the Newton-Raphson algorithm with arc length and by the commercial FEM code Abaqus. To investigate the effect of cross-sectional distortion of beams, some numerical examples are presented.

원형PET용기와 사각PET용기의 압축하중시 변형거동에 관한 수치적 연구 (Numerical Study of the Deformation Characteristics for Circle Shaped and Square Shaped PET Bottles under Compressive Loads)

  • 조승현;권창오;박균명;고영배
    • 소성∙가공
    • /
    • 제23권1호
    • /
    • pp.5-9
    • /
    • 2014
  • Although much research has been conducted to reduce the thickness of PET bottles in order to save manufacturing costs, the challenge remains of guaranteeing mechanical strength for top-loaded thin PET bottles. The current study investigates the large deformation characteristics of a circle shaped PET bottle and a square shaped PET bottle when compressively loaded using FEA. The arc length method is used in the nonlinear FEA to understand the buckling phenomenon. For PET bottles with the same capacity, the circle shaped bottle shows more resistance to buckling and compression loading than the square shaped bottle.

Nonlinear Analysis of RC Structures using Isogeometric RM Shell Element

  • Park, Kyoung Sub;LEE, Sang Jin
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.9-16
    • /
    • 2018
  • Nonlinear analysis of reinforced concrete (RC) structures is performed by using isogeometric Reissner-Mindlin (RM) shell element. The elasto-plastic constitutive model is employed to express the nonlinear behavior of concrete material and the equivalent smeared steel layer is introduced to represent steel reinforcement. The arc-length control method is used to produce the entire load-displacement path of RC structures. Finally, three benchmark tests are carried out to verify the performance of the present shell element. From isogeometric analysis, the present results show a good agreement with experimental results and it is provided as future benchmark test solutions.

9절점 가변형도 쉘요소를 이용한 콘크리트 구조물의 후-정점하중 해석 (A post-peak analysis of concrete structures using a 9-node assumed strain shell element)

  • 이상진;이홍표;서정문
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.59-66
    • /
    • 2001
  • The post-peak analysis of concrete structures is carried out using a nine-node Reissner-Mindlin(RM) shell element which is formulated by using degenerated solid concepts. In order to avoid element deficiencies inherited in the standard RM shell element, assumed strains are adopted in the present shell element. A microscopic material model is adopted to represent the inelastic characteristic of concrete material. In particular, a concrete softening model is introduced to this material model. The arc-length control method is used to trace the post-peak behaviour of concrete structures. From the numerical test of the single-edge-notched beam, the present shell element shows a reasonable agreement with experimental data.

  • PDF

초고강도 범퍼 빔의 롤 포밍 공정을 위한 플라워 패턴 설계 (Design of Flower Pattern in Roll Forming Process for Ultra High Strength Bumper Beam)

  • 차태원;김재홍;김근호;김병민
    • 소성∙가공
    • /
    • 제25권5호
    • /
    • pp.319-324
    • /
    • 2016
  • Recently, the roll forming process is one of the most widely used processes for manufacturing automotive part. In this study, flower patterns of roll forming process were designed to manufacture an ultra high strength bumper beam using the finite element analysis. Three types of flower patterns such as the basic type, the rotation type and the split type were designed based on the constant arc length forming method using the design software, UBECO Profil. Finite element analysis was performed to evaluate the suitability of designed flower patterns in terms of the longitudinal strain and the bow defect. The analytical results show that the split type represents more uniform longitudinal strain distributions and a good dimensional accuracy than other types of flower patterns.