• Title/Summary/Keyword: Arc-electrode interaction

Search Result 6, Processing Time 0.95 seconds

양극으로의 에너지 플럭스 유입을 고려한 대기압 아르곤 자유연소아크 해석

  • Lee, Won-Ho;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.498-498
    • /
    • 2012
  • 직류 아크 토치를 이용하여 열플라즈마를 발생시키는 방법은 전극의 구성에 따라 크게 비이송식(non-transferred)과 이송식(transferred)의 2가지 형태로 나눌 수 있다. 1950년대 H. Maecker 등에 의해 이론적 기초가 형성되기 시작한 이송식 아크 플라즈마 발생장치는 처리 대상물질을 전극으로 사용하여 양극에서의 에너지 전달을 직접 이용할 수 있으므로 열효율이 매우 높기 때문에 이를 이용한 고출력 토치에 관한 활발한 연구가 지속되고 있다. 본 연구에서는 대기압 아르곤 자유연소아크 방전에 의해 발생되는 열플라즈마의 열유동 특성을 수치적으로 해석하기 위하여 아크 기둥의 온도, 압력 및 속도 특성을 Navier-Stokes 방정식과 Maxwell 방정식을 연계 계산하였다. 또한 아크-전극 상호작용(arc-electrode interaction) 모델링을 통한 양극(anode)인 처리 대상물질로의 에너지 플럭스 유입을 고려하여 전극 내부의 온도분포를 계산하였다. 해석결과를 검증하기 위하여 음극과 양극 사이 플라즈마 기둥(column)의 중심축 온도는 Haddad & Farmer(1984)의 실험데이터와 비교하였고, 양극으로의 에너지 플럭스 및 온도분포 데이터는 Bini 등(2006)의 실험 및 해석데이터와 비교하여 만족스런 일치를 확인하였다.

  • PDF

Changes of Electrical Conductivity and Temperature Caused by Cathode Erosion in a Free-Burning Argon Arc

  • Jeon, Hong-Pil;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.255.2-255.2
    • /
    • 2014
  • Electrode erosion is indispensable for atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from arc plasmas to contacts, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. Our investigation is concerned with argon free-burning arcs with anode erosion at atmospheric pressure by computational fluid dynamics (CFD) analysis. We are also interested in the energy flux and temperature transferring to the anode with a simplified unified model of arcs and their electrodes. In order to determine two thermodynamic quantities such as temperature and pressure and flow characteristics we have modified Navier-Stokes equations to take into account radiation transport, electrical power input and the electromagnetic driving forces with the relevant Maxwell equations. From the simplified self-consistent solution the energy flux to the anode can be derived.

  • PDF

Study on the Flow and Mass Transfer in a PASB Arc Plasma Chamber (PASB 아크 플라즈마 챔버에서 발생하는 유동 및 물질전달에 관한 연구)

  • Lee, Jong-Chul;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.7-13
    • /
    • 2008
  • The computational investigation is performed to find out the interaction of arc plasmas with surrounding materials and the thermal flow characteristics in a PASB (Puffer-Assisted Self-Blast) chamber, which is one of new breaking concepts in $SF_6$ switchgears. It is very important to define the flow and mass transfer happened during the full arcing history for further understanding complex physics inside the chamber. In this study, we have considered two diffusion processes by the hot arc plasma, one is PTFE nozzle ablation and the other is Cu electrode evaporation, simultaneously. It was found that the principle of the pressure-rise inside the chamber is confirmed by the computational results and the increase of the electrical conductivity of the residual gas near current zero is critical to the chamber design.

Prediction of Anode Temperatures of Free Burning Arcs Using a Simplified Unified Model

  • Jeon, Hong-Pil;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.565-565
    • /
    • 2013
  • Free burning arcs where the work piece acts as an anode are frequently used for a number of applications. Our investigation is exclusively concerned with a simplified unified model of arcs and anode under steady state conditions at atmospheric pressure. The model is used to make predictions of arc and anode temperatures and arc voltage for a 200 A arc in argon. The computed temperatures along the axis between the cathode tip and the anode surface compare well the measured data. This knowledge of free burning arcfeatures can play a role in developing the atmospheric plasma systems, however, further investigation should include the modelling of Cu evaporation from anode and non-LTE situation near electrodes for more realistic calculations.

  • PDF

The Analysis of Arc-Flow Interaction in the GCB using the Modified FLIC Method and the Arc Model (Modified FLIC법과 아크 모델을 이용한 차단기 내의 아크 유동 해석)

  • Sin, Seung-Rok;Kim, Hong-Gyu;Jeong, Hyeon-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.172-179
    • /
    • 2000
  • In this paper, the analysis of the arc-flow in the GCB is presented by using the modified FLIC method and the arc model. The modified FLIC method adopts the upwind scheme and requires short calculation time. The arc model used in this paper treats the arc as a energy source in the energy equation. The energy source is composed of the ohmic heating and the radiation energy transfer. At each step, the movement of electrode is simulated. From the simulation, reasonable results can be obtained.

  • PDF

A Study of the Arcing History in a Thermal Puffer Plasma Chamber with a Coupled Simulation (연성해석을 통한 열파퍼 플라즈마 챔버의 아크현상 이력에 관한 연구)

  • Lee, Jong-Chul;Heo, Joong-Sik;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2506-2511
    • /
    • 2007
  • The coupled simulation is performed to find out the interaction of arc plasmas with surrounding materials in a thermal puffer plasma chamber. In order to be more realistic, PTFE nozzle ablation and Cu electrode evaporation, which are caused by high temperature of arc plasmas, are considered together. Pressure rise and temperature inside the chamber generated during the whole arcing history are investigated with the applied currents. It is very important to define how thermal flow and mass transfer are processing between the arc plasma and surrounding materials for further understanding complex physics inside the chamber. It is concluded that the result might be very useful to understand the mechanism happened inside and to design thermal puffer plasma chambers, but further experimental studies are required to verify the results for the more practical applications.

  • PDF