• Title/Summary/Keyword: Arc-crack

Search Result 101, Processing Time 0.018 seconds

Efforts of Specimen Sizes on Crack Opening Displacement (COD) for Submerged Arc Weldments of Fine Grained Steel (미세립강 잠호 용접부의 COD에 미치는 시편 크기의 영향)

  • 윤중근;김대훈;김문일
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.53-60
    • /
    • 1983
  • COD test based on fracture mechanics concept was used in this study to evaluate the fracture toughness quantitatively. Effects of specimen sizes on critical COD value for ABS EH 36 steel and its submerged arc weldments, and the variation of critical COD value depending on metallurgical/mechanical heterogeneities caused by weld thermal cycles were investigated. Experiment was performed by using specimens made from base metal and submerged arc weldments according to BS 5762. Obtained results are summarized as follows; 1) Critical COD value for base metal decreases with increasing thickness of specimen. On hand, as the reduction ratio of critical COD decreases with increasing specimen thickness, critical COD value becomes constant above a thickness of specimen. 2) Critical COD value for weldment decreases with increasing thickness of specimen and was also affected by metallurgical states of base metal. 3) Size effects for weldment was greater at the hardened region. 4) Critical COD value was affected by microstructural change due to weld thermal cycles in weldments; that is, accicular ferrite formation is favorable for increasing of COD value.

  • PDF

Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate (맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동)

  • Lee Yong-Bok;Oh Byung-Duck;Kim Sung-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

A study on surface fatigue crack behavior of SS400 weldment (SS400 용접부의 표면피로균열거동에 관한 연구)

  • 이용복;조남익;박강은
    • Journal of Welding and Joining
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists around welded joints, SS400 steel with thickness of 12mm, which has been generally used for structure members, was welded with submerged-arc butt type and machined for both surface. An initial surface defect of pit shape with the aspect ratio of 2 was made on the specimen. The initial defect was located at 5 different zones over the weldment : weld metal zone, boundary between weld metal and HAZ, HAZ, boundary between HAZ and base metal. Characteristics of surface fatigue crack propagation from the defect on each region under the same loading condition were investigated and compared.

  • PDF

A study on surface fatigue crack behavior of SS400 welding Zone (SS400용접 부위의 표면 피로균열거동에 관한 연구)

  • 이용복;조남익;박강은
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.214-217
    • /
    • 1995
  • In order to investigate characteristics of surface fatigue crack propagation from a pit shaped surface defect which frequently exists near weld joints, SS400 steel with thickness of 12mm, which generally used for structure members, was submerged-arc welded with butt type and machined for both surface. The weld joints were devided into 5 regions, weld metal, boundary between heat affected zone (HAZ), HAZ, boundary between HAZ and base metal, and base metal. Specimens from each region were machined for a pit shaped initial surface defect with aspect ratio of 2. characteristics of surface fatigue crack por pagation from the defect under the same loading condition were compared and discussed.

  • PDF

A Study on the Stress Concentration at Crack of Membrane Structures (막구조물의 파손단면에서의 응력집중 현상에 관한 연구)

  • Jeon, Jin-Hyung;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.89-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures arc unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure. In this study, we investigate into the stress concentration at crack of membrane structures. Therefore, using the nonlinear analysis program that NASS (Nonlinear Analysis for Spatial Structures) perform nonlinear analysis, and stress distribution for creak length investigate for using linear elastic fracture mechanics.

  • PDF

Effect of Heat Input on Girth welds properties of High strain steel pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.71-71
    • /
    • 2010
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

  • PDF

Effect of Heat Input on Girth Welds Properties of High Strain Steel Pipe (입열량이 고변형률 강관 원주 용접부 특성에 미치는 영향)

  • Lee, Jin-Woo;Song, Woo-Hyun;Seo, Dong-Han;Lee, Jong-Sub
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.25-30
    • /
    • 2009
  • SBD (Strain-based design) of pipe lines have gained world-wide attention in recent years. The present research aims to evaluate the fracture characteristics of API (America Petroleum Institute) SBD X100 girth weldment that typically applied for cold climate and deep water offshore, with the focus on the influence of heat input changing with 6kJ/cm and 10kJ/cm from GMAW (Gas Metal Arc Welding). At a low heat input at 6kJ/cm, the weld metal had Multi-phase matrix (Acicular ferrite + Banite + Martensite) that could fill up both fracture toughness and strength as reported previously. Also, the weld metal exhibited 859MPa YS (Yield strength), 108J impact toughness at $-40^{\circ}C$ and 0.52mm CTOD (Crack Tip Open Displacement) at $-10^{\circ}C$. These results can be satisfied with the requirement of API SBD X100 girth weldment and Alaska pipe line project.

A Study on the Fatigue Crack Growth Behavior in Welding Residual Stress Field(I) (용접잔류응력장에서의 피로균열 성장거동에 관한 연구(I))

  • 최용식;김영진;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 1990
  • The objective of this paper is to investigate the effect of residual stresses on the $\Delta$K$\sub$th/ and fatigue crack growth behavior of butt weldments. For this purpose, transverse butt sutmerged arc welding was performed on SM50A steel plate and CT(compact tension) specimens which loading direction is perpendicular to weld bead were selected. Welding residual stresses distribution on the specimen was determined by hole drilling method. The case of crack located parallel to weld bead, the states of as weld and PWHT, $\Delta$K$\sub$th/ of specimens(HAZ, weld zone) was higher than that of the base metal probably because of the compressive residual stresses of crack tip. In low $\Delta$K region, it is estimated that the effects of residual stresses for da/dN are great. In region II, the da/dN of weldments in as weld state was lower than that of the base metal. Though da/dN of Weldments in PWHT state was similar to that of the base metal. The constant of power law, m in two states consisted with the base metal. Therefore , it is estimated that the value of m is not affected by residual stresses. Fatigue crack growth behavior of weldments consisted with the base metal considering the effective stress intensity factor range($\Delta$K$\sub$eff/) included the effect of initial residual stress(Kres). Thus, we can predict the fatigue crack growth behavior of weldment by knowing the distribution of initial residual stress at the crack tip.

  • PDF

Evaluation on Liquid Formability of Bulk Amorphous Alloys (벌크비정질합금의 액상 성형성 평가)

  • Joo, Hye-Sook;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.227-231
    • /
    • 2006
  • Liquid formability of bulk amorphous alloys is known to be very poor due to their high viscosity comparing with conventional metallic materials. It is important to have the fabricating technology of bulk amorphous alloys in order to make the components with complicated shape. Liquid formability includes the mold cavity filling ability and the hot tear(crack) resistance during solidification. A mold made of a commercial tool steel for the formability test was designed. Melting was performed by the arc melting furnace with melting capacity of 200 g in an argon atmosphere. Liquid formability and glass forming ability of Cu base and Ni base bulk amorphous alloys were measured and evaluated. Mold filling ability of Ni-Zr-Ti-Si-Sn alloy was better than that of Cu-Ni-Zr-Ti alloy, however the reverse is the hot tear resistance. Bulk amorphous alloy is very susceptible to crack if partial crystallization occurs during solidification. Crack resistance was thought to be closely related with the glass forming ability.