• Title/Summary/Keyword: Arc-Welding Machine

Search Result 95, Processing Time 0.022 seconds

Development of Mash-Seam Welding Process by Flat Electrode Continuous Welding (평판전극 연속타점에 의한 매쉬심 용접기법 개발)

  • 조상명;조호재
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.513-517
    • /
    • 2003
  • Resistance welding processes are widely used in automotive applications. In particular, Mash-Seam resistance welding is typically used in Tailored Blank process. If spot welds are changed to a continuous weld, it's easy to reduce noise and to be more stable in cars. A arc welding, laser welding, seam welding using wheel electrode are available to make continuous welds on a car body, but they demand operator with advanced skills and expensive cost to develop. Therefore, flat electrode continuous mash-seam resistance welding process has been used to improve the weak points in currently available system in lap seam welding. This developed process has much more strength and air tightability, and also has much better plastic workability than laser welding. Moreover, commercial RSW machine can be readily used in this welding process.

Solidification Crackin in Root Pass for One-side Welding of 590MPa Class Steel for Pressure Vessels by FCAW (FCAW에 의한 590MPa급 고장력압력용기강의 초층편면용접부에서 발생하는 고온균열)

  • 김우열;한일욱;유덕상;방한서;안용식;박화순
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.47-54
    • /
    • 1999
  • It is well known that solidification cracking often occurs in welds of root pass for one-side welding under the conditions of high welding currents and speeds. In this study, the solidification in 590MPa class steel for pressure vessels SPPV490 was investigated by using flux-cored arc welding(FCAW) with 4 types of welding wires and welding conditions of 200∼280A and 2.8∼ 4.2mm/sec. In order to compared the result of cracking in SPPV490, 0.2%C steel for welded structure of SWS400 and 0.45%C steel for machine structural SM45C were also used as base metals. As the results, all the cracks formed in some welding conditions were observed near the center of weld bead. The solidification cracks were generally initiated near the upper surface of bead and propagated toward the inner part. The solidification cracking generally increased with welding current and welding speed in the same base metal and welding material. In cracking susceptibility, SPPV490 showed higher cracking susceptibility than SWS400 in all welding conditions and welding materials. It was considered that cracking susceptibility could not be evaluated with the hardness of weld metals. The cracking ratio increased with decreasing of a/b(a and b; the width of the upper surface and the back surface of the bead) as shape factor of bead. The cracking tendency with shape factor of bead was extended under the condition of higher welding currents.

  • PDF

A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes (GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구)

  • Kim, Ill-Soo;Shim, Ji-Yeon;Kim, In-Ju;Kim, Hak-Hyoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

A Study of Weld Quality Control in Arc Welding Using the Digital Image Processing (화상처리에 의한 아크용접에서의 용접품질제어에 관한 연구)

  • 김동철;이세현;엄기원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.499-503
    • /
    • 1994
  • The feedback control systems of welding process using visual information can improve weld qualities. However, it is very difficult to get the visual information of weld pool since welding are is much stronger than light from weld pool. To explore the possibility of extending the capability of automatic welding machines a study of a closed loop controlled welding system consisted of a GTA welding machine, a vision system, a stepping motor system and a digital computer was undertaken. Particularly, in this system, a CCD camera with 850nm long pass filter was focused on the weld pool to give a weld pool image. Subsequently, image analysis technique has been developed to measure a weld pool width. Using this weld pool width measurement, a colsed loop control system adjusted welding speed to maintain constant weld pool width.

  • PDF

Measurement and control of weld pool using vision system (시각장치를 이용한 용융지의 계측과 제어)

  • 박주용;황선효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.527-529
    • /
    • 1986
  • Measurement and control system of weld pool is comprised of optical devices, image processor, personal computer and welding machine. Combinations of ND and Infrared filters were used to block the intense arc light and to get the clearer image of weld pool. Smoothing operation and conversion to binary data were performed to eliminate the noises and to decrease the processing time. A simple algorithm for feedback control was developed and weld pool size is controlled by welding current which is adjusted automatically with personal computer.

  • PDF

Exposure Assessment of Welders to Extremely Low Frequency Magnetic Fields (일부 용접공의 극저주파 자계노출평가)

  • Jeong, Yeon Jun;Hong, Seung Cheol
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.509-517
    • /
    • 2014
  • Objectives: This study was conducted to investigate the patterns of exposure of welders to strong magnetic fields for extended periods of time on the basis of their daily activities as recorded in a logbook. Methods: Male workers whose main job is welding, specifically seven welders occupied with gas tungsten arc welding(GTAW), two performing shielded metal arc welding(SMAW), and ten engaged in gas metal arc welding(GMAW), were measured in terms of the degree to which they were exposed to extremely low frequency(ELF) magnetic fields over 24 hours by using an electromagnetic field meter(EMF meter), as well as based on a daily activity log. Results: The welders were exposed to $1.25{\pm}4.95{\mu}T$ of magnetic field per day on average. For those who spent more than half a day-735.26 minutes, or 51.1% of the day-at work, the figure averages $3.88{\pm}8.85{\mu}T$ with a maximum value of $221.28{\mu}T$. The subject welders spent $338.14{\pm}154.95$ minutes per day at home. During their stays at home, they were exposed to an average of $0.17{\pm}0.06{\mu}T$ with a maximum value of $3.50{\mu}T$. The maximum exposure of $221.28{\mu}T$ occurred when welders performed GMAW. The average exposure reached its highest at $17.71{\pm}6.96{\mu}T$ when conducting SMAW. Magnetic field exposure also depends upon posture: welders who sat while welding were exposed five times more than those who stood during work, and this difference is statistically significant. As for the relationship between distance from the welding power supply and maximum magnetic field exposure, maximum magnetic field exposure decreases as the distance increases. The average magnetic field exposure, in the meantime, showed no significant difference depending on distance. Conclusions: The following were observed through this study: 1) welders, while conducting jobs, are exposed to magnetic fields not only from the welding machine, but also from the surrounding base material due to the current flowing between the welding machine and base material, meaning that they are continuously exposed to a magnetic field; and 2) welders are more exposed to magnetic fields while they sit at a job compared to when they stand up.

The Evaluation of Mixed Welded SM 490A Steel by Acoustic Emission (3) (음향방출법에 의한 SM 490A 강의 복합용접성 평가 (3))

  • 이장규;인승현;우창기;박성완;김봉각
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.289-294
    • /
    • 2003
  • The object of this study is to investigate the effect of compounded welding by using acoustic emission (AE) signals fur weld heat affected zone (HAZ) in tensile testing. This study was carried out a SM 490A high tension steel for electronic shielded metal are welding (SMAW), $\textrm{CO}_2$ gas arc welding and TIG welding. And correspondingly, the root openings are 3, 4 and 2.8mm. Data displays are based on the measured parameters of the AE signals, along with environmental variables such as time and load. These history plots give us useful and powerful information to analyze the results of material evaluation testing.

  • PDF

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

Estimation of Fatigue Life in Butt-Welded Zone of SM45C Steel Rod (강 봉(SM45C) 맞대기 용접부의 피로수명 평가)

  • Oh, Byung-Duck;Lee, Yong-Bok
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • SM45C steel rods being used generally for power transmission shafts and machine components was selected and welded by Butt-GMAW(Gas Metal Arc Welding) method. An estimation of fatigue life was studied by constructing S-N curve. Fatigue strength of base metal zone showed higher values than one of weld zone in low cycles between $10^4$ and $10^6$cycles. However, significant decrease in fatigue strength of base metal was found around $10^6$cycles, which were almost same as one of heat affected zone. This decrease was attributed that initial residual stress of the steel rods distributed by drawing process was diminished by continually applied load, and resulted in softening of base metal. The fatigue limit of the weld zone was highest in the boundary between deposited metal zone and heat affected zone, and followed by in the order of deposited metal zone, base metal zone, and heat affected zone. Based on these results, it is revealed that the stress for safety design of machine components using SM45C butt-welded steel rods must be selected within the region of the lowest fatigue limit of heat affected zone.

Wear Characteristics of Submerged-Arc Cladding (서브머지드 아크 클래딩에 의한 표면 피복층의 마모특성)

  • 김권흡;강용규;권오양;육선평
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.844-847
    • /
    • 2002
  • This paper is to investigate the wear behavior of submerged-arc clad materials by the wear test with a ball-on-disk type wear testing machine in air. The specimens were clad with Stoody105 alloy wire on a carbon steel (SM45C) substrate by submerged-arc cladding process under different welding parameters. The wear behavior of the cladding through ball-en-disk test has been studied under the wear load from 5N to 16N and sliding speed from 8cm/s to 35cm/s. The weight of the specimen loss was measured. Scanning electron micrographs of the worn surface show a layer of oxide film formed on the worn surface. Oxidation wear mechanism controls the wear process. The spalling of the oxide is caused by the repeated rubbing fatigue mechanism.

  • PDF