• Title/Summary/Keyword: Arc weld

Search Result 505, Processing Time 0.027 seconds

A Study on the Efficient Welding Control System using Fuzzy-Neural Algorithm (퍼지-뉴럴 알고리즘을 이용한 효과적인 용접제어스시템에 관한 연구)

  • Kim, Gwon-hyung;Kim, Tae-yeong;Lee, Sang-bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.189-193
    • /
    • 1997
  • Generally, though we use the vision sensor or arc sensor in welding process, it is difficult to define the welding parameters which can be applied to the weld quality control. Especially, the important parameters is Arc Voltage, Welding Current, Welding Speed in arc welding process and they affect the decision of weld bead shape, the stability of welding process and the decision of weld quality. Therefore, it is difficult to determine the unique relationship between the weld bead geometry and the combination of various welding condition. Due to the various difficulties as mentioned, we intend to use Fuzzy Logic and Neural Network to solve these problems. Therefore, the combination of Fuzzy Logic and Neural network has an effect on removing the weld defects, improving the weld quality and turning the desired weld bead shape. Finally, this system can be used under what kind of welding process adequately and help us make an estimate of the weld bead shape and remove the weld defects.

  • PDF

Development of Laser-Rotating An Hybrid Welding Process (레이저-회전 아크 하이브리드 용접공정의 개발)

  • Kim, Cheol-Hee;Chae, Hyun-Byung;Lee, Chang-Woo;Kim, Jeong-Han;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • Laser-rotating arc hybrid welding was introduced by combining $CO_2$ laser and rotating gas metal arc welding. While the arc rotation enhances the weld pool motion, it reduces the undercut formation which is one of most critical weld defects in the conventional laser-arc hybrid welding. This research investigated the bead characteristics according to the welding parameters such as frequency of rotation, welding voltage, shielding gas composition and interspacing distance between laser and we. The welding parameters were selected to reduce spatter generation and ensure sound weld beads fur bead welding and butt welding with various joint gaps. Gap bridging ability was improved, such that the sound weld beads were achieved for butt joint with up to 2mm joint sap, with no adjustment of CTWD(Contact tip-to-workpiece distance) and electrode diameter.

A Study on the Weavingless Arc Sensor System in GMA Welding (II) -Torch Height Control in Weld Seam Tracking (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (II) -용접선 추적의 토치방향 높이제어-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 1998
  • Among the position sensing methods available, the arc sensor which utilizes the electrical signal obtained from the welding arc itself is one of the most prevalently used methods, because it has an advantage that no particular sensing device is necessary and real-time sensing of a groove position is possible directly under the arc. The authors have already developed a seam tracking system that contains a new arc sensor algorithm, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. In this study a torch height control algorithm for automatic weld seam tracking was proposed for completing the previous system, which uses an on-off control technique. To implement the torch height control algorithm during weld seam tracking the system parameters which include 2nd averaging range, weighting factor for 2nd moving averaging, and Z-directional basic compensation distance were determined by experimental analysis. Finally the two different height control methods, one is simple on-off control and the other on-off control using a reference current value , were compared in their tracking abilities.

  • PDF

A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems (파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

A Study of Fuzzy Control of Weld Pool Width in Gas Tungsten Arc Welding (Gas Tunsten Arc 용접에서 용융지폭의 퍼지 제어에 관한 연구)

  • Chung, Hyun-Kwon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.150-157
    • /
    • 1997
  • Uniform weld pool shape is important in determining the weld quality. And weld pool width is one of the most dominant factors of the seld pool shape. In order to control the weld pool width, the fuzzy logic controller, which is well adapted to the complicated nonlinear systems such as welding, was used in this study. The weld pool image was obtained through CCD camera, and the weld pool width was calculated by processing the image. Uaing the calculated width, welding speed, as a control input, was inferred by the fuzzy logic controller. An uniform weld pool width can be successfully obtained regardless of the disturbances in the system.

  • PDF

The Effects of Welding Wires on the Weldabilities of API X-100 with Laser-Arc Hybrid Welidng (API X-100의 레이저-아크 하이브리드 용접성에 미치는 용접와이어의 영향)

  • Kim, Sungwook;Lee, Mok-Young
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.7-12
    • /
    • 2014
  • In this study, API-X100 steel pipes were welded with various kinds of welding wires in the laser-arc hybrid welding process. 10kW fiber laser source was combined to MIG arc welding process. API X-100 steel of base metal was of 16.9mm thickness, and butt welding applied. After welding, full penetration weld was acquired by 1-pass welding. A root porosity and the lack of fusion was observed in some welding conditions. By the mixing the melted wire, acicular ferrite, polygonal ferrite, pro-eutectoid, aligned side plate, and bainite structures were observed at the weld metal. From the observation of hybrid weld, unmixed zone had more Ni and Cr. The unmixed zone was a 1/3 area of the weld metal. As the mechanical test of the hybrid welding, tensile test and impact test applied. From the tensile test, all of the welding except SM70S was fractured at the base metal. The result of the impact test at -30 degree C led 60J~320J of the absorbed energy. The result of the low-absorbed energy might be from the coarse equiaxed structures of the weld metal.

A Study on the Variation of Elements Loss of Wires and Oxygen Content of Weld Metal in GMAW (GMA용접에서 와이어 탈산원소 손실 및 용접금속 산소 변화 연구)

  • 방국수;장웅성
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.93-99
    • /
    • 1998
  • The effects of welding conditions of gas metal arc welding on the elements loss of solid wire, oxygen content and impact toughness of weld metals were studied. Deoxidizing elements loss was increased with increase of arc voltage in both short-circuit transfer mode and globular transfer mode. It is believed that increase of arc voltage results in increase of reaction time between elements in the droplet and surrounding gas at the end of wire and in the arc column. Based on the thermodynamic equilibrium model, the oxygen content of weld metal can be predicted with the content of silicon and manganese as following : [%O] = $K([%Si][%Mn])^{-0.25}$, K = -15518/T+6.01. The equilibrium temperature was dependent on shielding gas, and it was 187$0^{\circ}C$ for $CO_2$ gas and 180$0^{\circ}C$ for 20%$CO_2$-80%Ar gas. The oxygen content of weld metal which shows maximum impact toughness was varied with deoxidizing alloy system of wires, 0.041 wt% for Si-Mn type wire and 0.026 wt% for Si-Mn-Ti type wire.

  • PDF

Effects of Fluorides in the Flux Cored Wire on the Oxygen Content of Weld Metal (플럭스 코어드 와이어의 불화물 종류에 따른 용접금속 산소량의 변화)

  • Cha, Joo-hyeon;Bang, Kook-soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.615-619
    • /
    • 2019
  • Various fluorides, i.e., CaF2, Na3AlF6, K2SiF6, MnF3, MgF2, were added to the flux cored wire, and their effects on the oxygen content of the weld metal were investigated. The investigation showed that the oxygen content of weld metal was not influenced by the type of metallic elements in the fluoride; rather, it was influenced by the stability of the arc during welding. While the wire containing MgF2 showed the most stable arc and the least amount of oxygen in the weld metal, the wire containing MnF3 showed the least stable arc and the greatest amount of oxygen. Since the deoxidation of the weld metal was not affected by the deoxidation elements, such as Ca and Mg, it was possible to predict the oxygen content of the weld metal by the equilibrium Si-Mn deoxidation thermodynamic model.

A Study on an Electro-Magnetic System far Arc Rotating in MIAB Welding (MIAB용접에서 아크 회전을 위한 전자기 시스템에 관한 연구)

  • 최동혁;김재웅
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.391-398
    • /
    • 2001
  • MIAB welding method uses a rotating arc as its heat source and is known to be efficient in pipe butt welding. The arc is rotated around the weld line by the electro-magnetic force resulting from the interaction of arc current and magnetic field. This paper is concerned with the experiment of initial stage for process control, monitoring for weld quality, and the design of coil system which is efficient of flux generation and concentration. A coil system for the generation of magnetic flux was designed and constructed. Magnetic flux density and arc rotating behavior are important factors in MIAB welding, so the relations between these factors and process parameters were investigated. Various experiments were performed for the steel pipes(48.1mm O.D and 2.0mm thickness). The magnetic flux density is increased by increasing exciting current and decreasing gap size. The maximum of arc rotating frequency is affected by exciting current and gap size. However, the variations of arc rotating frequency during welding and then the melting process are mainly influenced by welding current. Thus, it is considered that the results of this study can be used as important data on the monitoring for weld quality and the design of efficient coil system.

  • PDF

Analysis of Electro-Magnetic Force Acting on Arc Column in Butt-Joint Welding of Mild Steel Plate (연강 판재의 맞대기 용접에서 아크에 작용하는 자기력의 해석)

  • Bae Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.73-80
    • /
    • 2005
  • Arc blow being occurred by Electro-Magnetic force(EMF) during the electric arc welding prevents the formation of a sound weldment. In this study, the effects of arc position, groove size, tack weld and base plate on the EMF in a butt-joint welding of mild steel plate are analyzed by a computer simulation based on the finite element method. The EMF can be numerically identified to be caused by a difference of the magnetic flux-density between ahead of and behind the arc in case that the workpiece locates asymmetrically around the uc. When there exists an air gap of groove ahead of the arc in the welding direction, the similar magnetic force has been producted regardless of the arc position and the gap size. The tack weld alleviates the magnetic force to about one fourth at the finish end of the workpiece. The magnetic force can be also significantly reduced with the base plate to about one fifth at the start end of the workpiece containing a tack weld.