• Title/Summary/Keyword: Arc plasma

Search Result 556, Processing Time 0.03 seconds

DEVELOPMENT OF COMBIND WELDING WITH AN ELECTRIC ARC AND LOW POWER CO LASER

  • Lee, Se-Hwan;Massood A. Rahimi;Charles E. Albright;Walter R. Lempert
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.176-180
    • /
    • 2002
  • During the last two decades the laser beam has progressed from a sophisticated laboratory apparatus to an adaptable and viable industrial tool. Especially, in its welding mode, the laser offers high travel speed, low distortion, and narrow fusion and heat-affected zones (HAZ). The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. Although high-power laser beams have been combined with the plasma from a gas tungsten arc (GTA) torch for use in welding as early as 1980, recent work at the Ohio State University has employed a low power laser beam to initiate, direct, and concentrate a gas tungsten arcs. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process known as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma (LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well focused melted spots.

  • PDF

A Study on Contact Arc Metal Cutting for Dismantling of Reactor Pressure Vessel (원자로 해체를 위한 수중 아크 금속 절단기술에 대한 연구)

  • Kim, Chan Kyu;Moon, Do Yeong;Moon, Il Woo;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.22-27
    • /
    • 2022
  • In accordance with the growing trend of decommissioning nuclear facilities, research on the cutting process is actively proceeding worldwide. In general, a thermal cutting process, such as plasma cutting is applied to decommissioning a nuclear reactor pressure vessel (RPV). Plasma cutting has the advantage of removing the radioactive materials and being able to cut thick materials. However, when operating under water, the molten metal remains in the cut plane and re-solidifies. Hence, cutting is not entirely accomplished. For these environmental reasons, it is difficult to cut thick metal. The contact arc metal cutting (CAMC) process can be used to cut thick metal under water. CAMC is a process that cuts metal using a plate-shaped electrode based on a high-current arc plasma heat source. During the cutting process, high-pressure water is sprayed from the electrode to remove the molten metal, known as rinsing. As the CAMC is conducted without using a shielding gas, such as Argon, the electrode is consumed during the process. In this study, CAMC is introduced as a method for dismantling nuclear vessels and the relationship between the metal removal and electrode consumption is investigated according to the cutting conditions.

The Effects of Start Block and Arc Length on Melt Through and Unmelted Zone at Welding Start in High Speed Plasma Arc Welding of Thin Plate (박판 고속 플라즈마 맞대기 용접에서 용접 시작부의 용락과 미용융에 미치는 시작블록과 아크길이의 영향)

  • Chu, Yong-Su;Hong, Seong-Joon;Jung, Jae-Pil;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2008
  • In welding of thin plate, some defects such as melt through and unmelted zone occur easily at welding start, however there is a limited study on those problems. Therefore the effects of start block and arc length on melt through and unmelted zone at start were investigated in this study. When start block height was lower than base metal, there was melt through at start. And when the height was even with base metal, no unmelted zone existed. Unmelted zone was increased as start block height increased from 0mm to 0.5mm. However unmelted zone was not much changed as the height increasing from 0.5mm to 1.0mm. When gap existed between start block and base metal, melt through occurred. However, unmelted zone was increased as the contact force of start block on base metal was increased from 0kgf to 7.5kgf. And when arc length was decreased from 3.8mm to 3.0mm, unmelted zone was decreased. It was concluded that the optimum condition to prevent melt through and to minimize unmelted zone would be with start block height 0.25mm, contact force 3.0kgf, and arc length 3.4mm. This optimum condition was applied to the mass production line and resulted in satisfied outcome.

Development and Testing of a Prototype Long Pulse Ion Source for the KSTAR Neutral Beam System

  • Chang Doo-Hee;Oh Byung-Hoon;Seo Chang-Seog
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.357-363
    • /
    • 2004
  • A prototype long pulse ion source was developed, and the beam extraction experiments of the ion source were carried out at the Neutral Beam Test Stand (NBTS) of the Korea Superconducting Tokamak Advanced Research (KSTAR). The ion source consists of a magnetic bucket plasma generator, with multi-pole cusp fields, and a set of tetrode accelerators with circular apertures. Design requirements for the ion source were a 120kV/65A deuterium beam and a 300 s pulse length. Arc discharges of the plasma generator were controlled by using the emission-limited mode, in turn controlled by the applied heating voltage of the cathode filaments. Stable and efficient arc plasmas with a maximum arc power of 100 kW were produced using the constant power mode operation of an arc power supply. A maximum ion density of $8.3{\times}10^{11}\;cm^{-3}$ was obtained by using electrostatic probes, and an optimum arc efficiency of 0.46 A/kW was estimated. The accelerating and decelerating voltages were applied repeatedly, using the re-triggering mode operation of the high voltage switches during a beam pulse, when beam disruptions occurred. The decelerating voltage was always applied prior to the accelerating voltage, to suppress effectively the back-streaming electrons produced at the time of an initial beam formation, by the pre-programmed fast-switch control system. A maximum beam power of 0.9 MW (i.e. $70\;kV{\times}12.5\;A$) with hydrogen was measured for a pulse duration of 0.8 s. Optimum beam perveance, deduced from the ratio of the gradient grid current to the total beam current, was $0.7\;{\mu}perv$. Stable beams for a long pulse duration of $5{\sim}10\;s$ were tested at low accelerating voltages.

A STUDY ON THE MODE OF POLYMERIZATION OF LIGHT-CURED RESTORATIVE MATERIALS CURED WITH PLASMA ARC LIGHT CURING UNIT (Plasma arc light curing unit을 이용한 광중합형 수복재의 중합양상)

  • Woo, Youn-Sun;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.2
    • /
    • pp.262-269
    • /
    • 2002
  • The purpose of this study was to compare the effect of distance of light tip to resin surfaces and exposure time on the polymerization of surface and 2 mm subsurface of composite resins cured with two light sources; conventional halogen light (XL 3000, 3M, U.S.A.) and plasma arc light (Flipo, LOKKI, France) and compare the uniformity of polymerization from the center to the periphery of resin surfaces according to polymerization diameter cure with two light sources. From the experiment, the following results were obtained. 1. Difference of relative light intensity decrease in plasma arc light smaller than that of conventional halogen light(p<0.05). 2. In all groups, microhardness of top surfaces was decreased when distance of the light tip to resin surfaces is more than 2mm and increased according to increase of exposure time(p<0.05). 3. Difference of microhardness of the 2mm subsurface was rapidly decreased when distance of light tip to resin surfaces is more than 4mm(except, plasma arc light exposure time of 3 seconds). and the distance of light tip to resin surfaces and exposure time more affected 2mm subsurface rather than top surface(p<0.05). 4. Although exposure time was increased, difference of microhardness of the 2mm subsurface with the distance of light tip to resin surfaces was relatively high in groups between below 4mm and 6 mm(p<0.05). 5. Plasma arc light exposure time of 6 to 9 seconds produced microhardness values and microhardness change according to various distance similar to those produced with 40 to 80 second exposure to a conventional halogen light(p>0.05). 6. In all groups, microhardness was decreased gradually from the center to the periphery of resin surfaces(p<0.05).

  • PDF