• 제목/요약/키워드: Arc discharge current

검색결과 99건 처리시간 0.031초

코로나와 직렬아크 방전에 의해 발생한 음향신호의 분석 (Analysis of Acoustic Signals Produced by Corona and Series-arc Discharges)

  • 조향은;진창환;박대원;길경석;안창환
    • 한국전기전자재료학회논문지
    • /
    • 제25권2호
    • /
    • pp.147-152
    • /
    • 2012
  • This paper dealt with the frequency component analysis of acoustic signals produced by corona and series-arc discharges as a diagnostic technique for closed-switchboards. Corona and series-arc discharge were simulated by a needle-plane electrode and an arc generator specified in UL1699, respectively. Acoustic signal was detected by a wideband acoustic sensor with a frequency bandwidth of 4 Hz~100 kHz (-3 dB). We analyzed frequency spectrums of the acoustic signals detected in various discharge conditions. The results showed that acoustic signals mainly exist in ranges from 30 kHz to 60 kHz. From the experimental results, an acoustic detection system which consists of a constant current power supply (CCP), a low noise amplifier (LNA) and a band pass filter was designed and fabricated. The CCP separates the signal component from the DC source of acoustic sensor, and the LNA has a gain of 40 dB in ranges of 280 Hz~320 kHz. The high and the low cut-off frequency are 30 kHz and 60 kHz, respectively. We could detect corona and series-arc discharges without any interference by the acoustic detection system, and the best frequency is considered in ranges of 30 kHz~60 kHz.

신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향 (Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor)

  • 김관태;황나경;이재옥;이대훈;허민;송영훈
    • 한국대기환경학회지
    • /
    • 제26권6호
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

플라즈마 아크 방전법으로 제조된 Fe 나노분말의 특성 (Characteristics of Fe Nano Powders Synthesized by Plasma Arc Discharge Process)

  • 박우영;윤철수;유지훈;오영우;최철진
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.511-515
    • /
    • 2004
  • Fe nano powders were synthesized by plasma arc discharge (PAD) process and studied by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Pure Fe rod($99.9\%$) was used as a source of metallic vapor under argon and hydrogen mixed atmosphere. The synthesized Fe nano powders had nearly spherical shapes and core-shell type structures. The influence of process parameters on the structure and size was investigated. The powder size increased with increasing of the chamber pressure and input current. High hydrogen gas ratio in chamber atmosphere affected the particle size and amount of Fe nanopowder.

Arbitrary Lagrange-Eulerian 기법을 활용한 액중 방전 성형의 해석적 연구 (Numerical Study of Electrohydraulic Forming Using an Arbitrary Lagrange-Eulerian Method)

  • 우민아;노학곤;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.49-55
    • /
    • 2016
  • Electrohydraulic forming (EHF) is a high-speed forming process that uses an electric arc discharge in water. Shock waves resulting from the electric arc discharge are propagated to the blank through water and the blank moves toward the die. Advantages of EHF include improved formability due to the high-speed process and reduction of the bouncing effect. In the current study, a numerical simulation of EHF was developed using LS-DYNA. In the simulation, the model for the electric arc was assumed as an adiabatic gas expansion and an Arbitrary Lagrange-Eulerian (ALE) multi material formulation was used to describe the interaction between the electric arc and the water. In order to model the Fluid-Structure Interaction (FSI), a coupling mechanism was used. The blank of Al 1100-O was simulated using shell elements. The results of the simulation showed that the blank was deformed due to the pressure propagation of water and the bouncing effect did not affect the formability of blank.

탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향 (Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode)

  • 정혁;조유석;강영진;김도진
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

초고압 차단부 아크방전 수치해석 및 난류모델에 관한 연구 (STUDY ON NUMERICAL ANALYSIS AND TURBULENCE MODELS FOR ARC DISCHARGES IN HIGH-VOLTAGE INTERRUPTERS)

  • 이종철
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.9-15
    • /
    • 2010
  • In this study, we calculated arc discharges and flow characteristics driven by arcs in a thermal puffer chamber, which is one of most outstanding high-voltage interrupters, for understanding the complex physics and the probability of thermal breakdown. The four main parts of arc model for this virtual-reality are radiation, PTFE ablation, Cu evaporation, and turbulence. Among these important parts the turbulence model can be critical to the reliability of computation results during the whole arcing history because the plasma flow is affected by high heat energy and mass momentum. Two turbulence models, the Prandtl's mixing length model and the standard $k-\varepsilon$ model, are applied for these calculations and are compared with pressure-rise inside chamber and arc voltage between the contacts as well as flow characteristics near current zero.

Hydrocarbon Plasma of a Low-Pressure Arc Discharge for Deposition of Highly-Adhesive Hydrogenated DLC Films

  • Chun, Hui-Gon;Oskomov, Konstantin V.;Sochugov, Nikolay S.;Lee, Jing-Hyuk;You, Yong-Zoo;Cho, Tong-Yul
    • 반도체디스플레이기술학회지
    • /
    • 제2권1호
    • /
    • pp.1-5
    • /
    • 2003
  • Plasma generator based on non-self-sustained low-pressure arc discharge has been examined as a tool for deposition of highly-adhesive hydrogenated amorphous diamond-like carbon(DLC) films. Since the discharge is stable in wide range of gas pressures and currents, this plasma source makes possible to realize both plasma-immersion ion implantation(PIII) and plasma-immersion ion deposition(PIID) in a unified vacuum cycle. The plasma parameters were measured as functions of discharge current. Discharge and substrate bias voltage parameters have been determined for the PIII and PIID modes. For PIID it has been demonstrated that hard and well-adherent DLC coating are produced at 200-500 eV energies per deposited carbon atom. The growth rates of DLC films in this case are about 200-300 nm/h. It was also shown that short(∼60$\mu\textrm{s}$) high-voltage(> 1kV) substrate bias pulses are the most favorable for achieving high hardness and good adhesion of DLC, as well as for reducing of residual intrinsic stress are.

  • PDF

Experimental Results of New Ion Source for Performance Test

  • 김태성;정승호;장두희;이광원;인상열
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.269-269
    • /
    • 2012
  • A new ion source has been designed, fabricated, and installed at the NBTS (Neutral Beam Test Stand) at the KAERI (Korea Atomic Energy Research Institute) site. The goalis to provide a 100 keV, 2MW deuterium neutral beam injection as an auxiliary heating of KSTAR (Korea Super Tokamak Advanced Research). To cope with power demand, an ion current of 50 A is required considering the beam power loss and neutralization efficiency. The new ion source consists of a magnetic cusp bucket plasma generator and a set of tetrode accelerators with circular copper apertures. The plasma generator for the new ion source has the same design concept as the modified JAEA multi-cusp plasma generator for the KSTAR prototype ion source. The dimensions of the plasma generator are a cross section of $59{\times}25cm^2$ with a 32.5 cm depth. The anode has azimuthal arrays of Nd-Fe permanent magnets (3.4 kG at surface) in the bucket and an electron dump, which makes 9 cusp lines including the electron dump. The discharge properties were investigated preliminarily to enhance the efficiency of the beam extraction. The discharge of the new ion source was mainly controlled by a constant power mode of operation. The discharge of the plasma generator was initiated by the support of primary electrons emitted from the cathode, consisting of 12 tungsten filaments with a hair-pin type (diameter = 2.0 mm). The arc discharge of the new ion source was achieved easily up to an arc power of 80 kW (80 V/1000 A) with hydrogen gas. The 80 kW capacity seems sufficient for the arc power supply to attain the goal of arc efficiency (beam extracted current/discharge input power = 0.8 A/kW). The accelerator of the new ion source consists of four grids: plasma grid (G1), gradient grid (G2), suppressor grid (G3), and ground grid (G4). Each grid has 280 EA circular apertures. The performance tests of the new ion source accelerator were also finished including accelerator conditioning. A hydrogen ion beam was successfully extracted up to 100 keV /60 A. The optimum perveance is defined where the beam divergence is at a minimum was also investigated experimentally. The optimum hydrogen beam perveance is over $2.3{\mu}P$ at 60 keV, and the beam divergence angle is below $1.0^{\circ}$. Thus, the new ion source is expected to be capable of extracting more than a 5 MW deuterium ion beam power at 100 keV. This ion source can deliver ~2 MW of neutral beam power to KSTAR tokamak plasma for the 2012 campaign.

  • PDF

Development of a low energy ion irradiation system for erosion test of first mirror in fusion devices

  • Kihyun Lee;YoungHwa An;Bongki Jung;Boseong Kim;Yoo kwan Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.70-77
    • /
    • 2024
  • A low energy ion irradiation system based on the deuterium arc ion source with a high perveance of 1 µP for a single extraction aperture has been successfully developed for the investigation of ion irradiation on plasma-facing components including the first mirror of plasma optical diagnostics system. Under the optimum operating condition for mirror testing, the ion source has a beam energy of 200 eV and a current density of 3.7 mA/cm2. The ion source comprises a magnetic cusp-type plasma source, an extraction system, a target system with a Faraday cup, and a power supply control system to ensure stable long time operation. Operation parameters of plasma source such as pressure, filament current, and arc power with D2 discharge gas were optimized for beam extraction by measuring plasma parameters with a Langmuir probe. The diode electrode extraction system was designed by IGUN simulation to optimize for 1 µP perveance. It was successfully demonstrated that the ion beam current of ~4 mA can be extracted through the 10 mm aperture from the developed ion source. The target system with the Faraday cup is also developed to measure the beam current. With the assistance of the power control system, ion beams are extracted while maintaining a consistent arc power for more than 10 min of continuous operation.

임의 방전을 이용한 전차선 열화특성 (The Degradation Properties on Overhead Contact Line Using Artificial Discharge)

  • 고병훈;박영;권삼영;정호성;박현준;김창희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.209-210
    • /
    • 2007
  • This paper describes the various wavelengths of electrical arc on overhead contact line for improvement of the current collection performance. The tests are performed with the arc measuring device and a welding machine to generate electrical are artificially. The experimental result shows the electrical are on overhead contact line and pantograph could be analyzed by artificial discharge.

  • PDF