• Title/Summary/Keyword: Arc behavior

Search Result 351, Processing Time 0.029 seconds

The analysis of leakage current characteristics of polymer insulators for estimation under Pollution conditions (고분자 절연물의 내오손 진단을 위한 누설전류 특성 해석)

  • Kim, I.S.;Han, S.W.;Cho, H.G.;Soh, J.J.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1452-1454
    • /
    • 1997
  • Properties of flashover in polymer insulators are very important under pollution environments. It is necessary to analyse flashover characteristics whether insulators are still safe or not. A lot of precious information can be got out of polluted polymer insulators through leakage current measurement. The behavior of partial arc discharge leads to flashover directly. It is possible to measure partial arc discharge as leakage current pulses analysis. The shape of histogram reflects degree of pollution, wetting and voltage stress level. It can be expressed by Weibull distribution function.

  • PDF

The Effect of Rapid Solidification Process on the Oxidation Behavior of Fe-Cr-Al Alloys at Elevated Temperature (Fe-Cr-Al 합금의 급속응고가 고온산화거동에 미치는 영향)

  • 문병기;김재철;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 1996
  • Fe-Cr-Al and Fe-Cr-Al-Hf alloys prepared either by arc melting or by single roll casting(melt spinning) were exposed to air isothermally at 900~$1100^{\circ}C$. Whisker-like alumina was observed on the surface of the specimens when oxidized at $900^{\circ}C$, but convoluted alumina above $1000^{\circ}C$. All the Hf-free specimens and Hf-added specimens produced by single roll casting formed only external scale mainly composed of $Al_2O_3$ after oxidation at 900~$1100^{\circ}C$ for 100 hours, but Hf-added specimen produced by arc melting formed Hf-rich internal oxides below the thin external $Al_2O_3$ scale except at $900^{\circ}C$. Most of the rapidly solidified Fe-Cr-Al alloys showed smaller weight gains than conventionally casted ones besides Hf-added one oxidized at $1100^{\circ}C$.

  • PDF

Carbonization Behavior due to Surface Tracking (연면 트래킹에 의한 탄화 거동)

  • Jung, Yeon-Ha;Jang, Tae-Jun;Shong, Kil-Mok;Roh, Young-Su;Kwak, Hee-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.28-33
    • /
    • 2007
  • In this paper, we are studied on the direction and formation of carbonized conductive path according to surface leakage current between electrodes. The characteristics of the tracking as surface is broken down between exposed live parts. Using the HSIS(high speed imaging system. 100,000[fps], redlake ltd., USA), it took photographs by arc growth mechanism occurred in on/off surge, ground fault and discharge between electrodes. Then the results was analyzed. Hereafter, it expected effects that application of energy utility technology through the arc control.

Analysis of CD Stud Welding Process and Defects Part 1: Process Modeling and Analysis (CD 스터드 용접의 해석 및 결함 분석 Part 1 : 공정 모델링과 해석)

  • Oh Hyun-Seok;Yoo Choong-D.
    • Journal of Welding and Joining
    • /
    • v.24 no.3
    • /
    • pp.34-41
    • /
    • 2006
  • The CD (Capacitor Discharge) stud welding utilizes the arc heat and pressure to attach the stud to the workpiece, which consists of the arc. ignition, arcing and pressure welding stages. In order to predict the dynamic behavior of the CD stud welding process, mechanical and electrical models are employed in this work. While the mechanical model estimates the duration of each stage, the electrical model predicts the voltage and current waveforms using the RLC circuit. Effects of process parameters such as the electric components and spring force are analyzed through simulation. It is found that the contact resistance and gap between the stud and base metal influence the tip fusing and arcing duration. The calculated results showed reasonably good agreements with the experiment results.

UNDERLIGNING THERMOCAPILLARY EFFECTS BY ELECTRON BEAM MELTING OF THIN SPECIMENS

  • Domergue, L.;Camel, D.;Marya, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.199-204
    • /
    • 2002
  • Extensive investigations on cast to cast variations observed in steels have underlined the role of thermocapillary or surface tension driven fluid flow in welding operations. The behavior of weld pool under the electric arc is however affected by possible arc modifications linked to microchemistry variations in materials & this limits to some extent the real contribution from surface tension effects. Thus, electron beam welding with high vacuum was used to investigate thermo-capillary effects on thin austenitic stainless steels & nickel based alloys. The weld pool was monitored by video observations to estimate the importance of fluid flow during the melting & solidification phase. The results underline the importance of fluid flow on [mal solidification.

  • PDF

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 해석적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Gun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.768-774
    • /
    • 2010
  • A parametric study is conducted for the segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship equations between plasma temperature, inner diameter (R) and length (L) of the torch constrictor at the given input power and current conditions based on the arc channel model. The results reveal that arc plasma temperatures show non-linear behavior or absence corresponding to the variations of L and R when their values become larger than 1.25 m and 7.5 mm, respectively. For L < 1.25 m and R < 7.5 mm, however, they can increase monotonically as L increase or R decrease when one of both parameters is fixed. From these parametric study results, optimum ranges of R and L are suggested as $5.5mm{\leq}R{\leq}7.0mm$ and $0.5m{\leq}L{\leq}1.0m$ for 0.4 MW class segmented arc plasma torch, under which stable arc plasma with the temperatures of ~15,000 K can be achived at the input currents of ~300 A.

  • PDF

Synthesis and Thermoelectric Properties of Skutterudite CoSb3 (Skutterudite CoSb3의 합성 및 열전특성)

  • Kim I. H.;You S. W.;Park J. B.;Lee J. I.;Ur S. C.;Jang K. W.;Choi G. S.;Kim J. S.;Kim H. J.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.667-670
    • /
    • 2005
  • Binary skutterudite $CoSb_3$ compounds were prepared by the arc melting and hot pressing processes and their thermoelectric properties were investigated in the range from 300 to 600 K. Annealing effect was correlated to phase transformation and homogenization. Thermoelectric properties of the arc-melted and hot-pressed $CoSb_3$ were discussed and compared. Undoped intrinsic $CoSb_3$ prepared by the arc melting showed p-type conduction, while it showed metallic behavior with increasing measuring temperature. However, hot pressed specimens showed n-type conduction, possibly due to Sb evaporation. Thermoelectric properties were remarkably improved by annealing In vacuum and they were closely related to phase transformation.

A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method ($CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

Low Cycle Fatigue Behavior of Alloy617 Weldment at 850℃ (850℃에서의 Alloy 617 용접재의 저사이클 피로 특성)

  • Hwang, Jeong Jun;Kim, Seon Jin;Kim, Woo Gon;Kim, Eung-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of $850^{\circ}C$, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF