• Title/Summary/Keyword: Arc River

Search Result 96, Processing Time 0.025 seconds

Development of River Management System with Operation of an Experimental Watershed (시험유역의 운영을 통한 하천관리시스템의 개발)

  • Kim, Sang Ho;Choi, Hung Sik;Lee, Eul Rae
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 2006
  • River Management System was developed to achieve water quality analysis that reflects physical characteristics of river flow. The Gyecheon basin which is located at the upstream of Hoengseong dam was selected as an experimental watershed and hydrologic and water quality monitoring network was set up for acquisition of real time data. The observed data have been stored in the system until present. The hydraulic and water quality models were constructed for an experimental watershed, and the calibration and verification was performed using past flood events and observed water quality data. Graphic User Interface(GUI) was developed with ArcView in a study area. Developed system can be effectively used to water quality monitoring and management in Hoengseong Lake.

  • PDF

Calibration and Validation of SWAT for the Neponset River Watershed in Boston (보스턴 넷폰셋강의 수질체계에 대한 스왓모델의 교정과 유효성 검증)

  • Lee, Ja-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • A validation study has been performed using the Soil and Water Assessment Tool(SWAT) model with data collected for the Neponset River watershed, which includes roughly 130 square miles of land located southwest of Boston. All of this land drains into the Neponset River, and ultimately into Boston Harbor. This paper presents the methodology of a SWAT model. The calculated contribution of the baseflow to the streamflow is far too high whereas the interflow is strongly underestimated. Alternatively, the modified and calibrated model yields far better results for the catchment. The modification allows hydrological processes to be modeled while not restraining the applicability of the model to catchments with other characteristics. For this study, the SWAT 2005 model is used with ArcGIS 9.1 as an interlace, and sensitivity analysis is performed to provide rough estimated values before adjusting sensitive input parameters during calibration period.

  • PDF

The Management Planning of Pollutant Loading Allocation in the Kumho River Basin (금호강 유역의 오염총량 관리 대책 수립)

  • 황병기;정효준
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1125-1131
    • /
    • 2002
  • This study was performed to plan pollutant loading allocation by sub-watershed at Kumho river basin located in the north Kyeongsang province. HEC-geoHMS which is extension program of ArcView was used to extract sub-watershed. To simulate water quality, Qua12eu model was calibrated and validated. BOD was simulated under several scenarios to evaluate reduction effects of pollutant loading. Uniform treatment and transfer matrix method was considered. Effects of headwater flow rate and efficiency waste water treatment plant were also considered.

Evaluation of Water Quality Characteristics and Water Quality Improvement Grade Classification of Geumho River Tributaries (금호강 수계 지류하천의 수질 특성 평가 및 수질개선 등급화 방안)

  • Jung, Kang-Young;Ahn, Jung-Min;Kim, KyoSik;Lee, In Jung;Yang, Duk Seok
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.767-787
    • /
    • 2016
  • In this study, we analyzed on-site monitoring data for 15 tributaries in Geumho watersheds for 3 years (2011-2013) in order to sort out priorities on water quality characteristics and improvement. As a result of estimating contribution to contamination of the tributary rivers, Dalseocheon showed the highest load densities, despite the smallest watershed area, with 22.7% $BOD_5$, 30.7% $COD_{Mn}$, 31.3% TOC and 47.6% TP. After conducting PCA (principal component analysis) and FA (factor analysis) to analyze water quality characteristics of the tributary rivers, the first factor was classified as $COD_{Mn}$, TOC, EC, TP and $BOD_5$, the second factor as pH, Chl-a and DO, the third factor as water temperature and TN, and the fourth factor as SS and surface flow. In addition, arithmetical sum of each factor's scores based on grading criteria revealed that Dalseocheon and Namcheon were classified into Group A for their highest scores - 96 and 93, respectively -, and selected as rivers that require water environmental management measures the most. Also, water environmental contamination inspection showed that Palgeocheon had the most number of aquatic factors to be controlled: $BOD_5$, $COD_{Mn}$, SS, TOC, T-P, Chl-a, etc.

Dynamical Downscaling Technique through Hyper-Resoltion River Routing Modeling: A Case Study of Geum River, South Korea (초고해상도 지표 수문-하도 추적 모델을 통한 역학적 상세화 기술 개발: 금강 유역 사례 연구)

  • Kam, Jonghun;Kim, Byeong-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.111-111
    • /
    • 2022
  • 우리 사회가 수자원 관리 정책 결정에 사용 가능한 수문 이상 기상 정보를 제공하기 위해서는 초고해상도 지표면 수문 모델 개발이 필수적이다. 본 연구에서는 기존 저해상도 기후 모델들의 지표 수문학적인 과정들을 개선하기 위해 초고해상도 하도 추적 모델링 기술을 통해 역학적인 상세화가 시도되었다. 100-km 격자의 VIC 모델에서 재생산된 지표 배출량과 기저 배출량을 입력 데이터로 사용하여 다양한 공간 규모의 하도 추적 모델에서 사용하여 산정된 하천유량의 신뢰도를 평가하였다. 본 연구에서는 90미터 (3 arc second), 450 미터(15 arc second), 그리고 900 미터 (30 arc second) 격자 규모의 금강 유역 하천망 지도를 사용하여 과거 장기 하천 유량 데이터(1948년-2016년)를 재생산하였다. 본 연구에서는 금강 유역 내의 지점 관측 하천 유량 데이터와 재생산된 유량 데이터의 불확실성을 평가하였다. 본 연구의 주요 결과는 보다 고해상도의 하천망 지도를 하도 추적 모델에 사용 시 산정된 하천 유량 데이터의 불확실성이 감소하는 경향을 발견하였다. 끝으로, 초고해상도 지표 수문-하도 추적 모델을 통한 상세화 기술의 한계점과 개선 방안을 논의하였다. 본 연구는 기후변화로 인한 이상 기상 또는 기후의 위험성 증가에 효율적으로 선제 대응할 수 있는 핵심 수문 기후 모델링 기술을 개발에 중요한 기여할 것이다.

  • PDF

A tool development for forced striation and delineation of river network from digital elevation model based on ModelBuilder (모델빌더 기반 하천망의 DEM 각인 및 추출 툴 개발)

  • Choi, Seungsoo;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.8
    • /
    • pp.515-529
    • /
    • 2019
  • Geospatial information for river network and watershed boundary have played a fundamental roles in terms of river management, planning and design, hydrological and hydraulic analysis. Irrespective of their importance, the lack of punctual update and improper maintenance in currently available river-related geospatial information systems has revealed inconsistency issues between individual systems and spatial inaccuracy with regard to reflecting dynamically transferring riverine geography. Given that digital elevation models (DEMs) of high spatial resolution enabling to reproduce precise river network are only available adjacent to national rivers, DEMs with poor spatial resolution lead to generate unreliable river network information and thereby reduce their extensible applicabilities. This study first of all evaluated published spatial information available in Korea with respect to their spatial accuracy and consistency, and also provides a methodology and tool to modify existing low resolution of DEMs by means of striation of conventional or digitized river network to replicate input river network in various degree of further delineation. The tool named FSND was designed to be operated in ArcGIS ModelBuilder which ensures to automatically simulate river network striation to DEMs and delineation with different flow accumulation threshold. The FNSD was successfully validated in Seom River basin to identify its replication of given river network manually digitized based on recent aerial photograph in conjunction with a DEM with 30 meter spatial resolution. With the derived accuracy of reproducibility, substantiation of a various order of river network and watershed boundary from the striated DEM posed tangible possibility for highly extending DEMs with low resolution to be capable of producing reliable riverine spatial information subsequently.

Assessment of Human Impact on Mekong River Flood by Using Satellite Nightlight Image

  • Try, Sophal;Lee, Giha;Lee, Daeeop;Thuy, HoangThu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.187-187
    • /
    • 2016
  • High intensity of population distribution in deltaic setting especially in Asia tends to have increased and causes coastal flood risk due to lower elevations and significant subsidence. Maximum or peak discharge of flood always causes numerous deaths and huge economic losses. New technology of spatial satellite image has been applied to analyze flood damage. In this research, the relationship of nightlight intensity associated with flood damages has been determined during 1992-2013 with spatial resolution of 30 arc sec ($0.0083^{\circ}$) which is nearly one kilometer at the equator in whole six countries along the Mekong River (i.e., China, Myanmar, Lao PDR, Thailand, Cambodia and Vietnam). ArcGIS Hydrological Flow Length Tool has been used to determine the distance of each pixel areas from the rivers and streams. Statistical analysis results highlight the significant correlation R = 0.47 between nightlight digital number and economic damages per unit area (US$/km2) and R = 0.62 for number of affected people for unit area ($people/km^2$). The areas near by the Mekong River and its tributaries correspond to high flood damage. This spatial analysis result is going to be prestigious key information to the regions and all related stakeholders for decisions and mitigation strategies.

  • PDF

Landscape Structure and Relationship between Water Quality and Land Use Pattern in the Watershed of the Wangsuk River in Gyunggi-do Korea

  • Lee, Chang-Seok;Lee, An-Na;You, Young-Han
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.253-258
    • /
    • 2001
  • Land use pattern in the Wangsuk river watershed was investigated on the bases of physiognomic vegetation maps made from the aerial photograph interpretation and field check. Landscape structure was analyzed using a GIS program supported by ArcView. Landscape structure depended on the geographical position of the river, such as the upper, middle and lower river. Watersheds of the upper and middle rivers were dominated by forests composed of secondary forest and plantation. But agricultural fields dominated that of the middle and lower river. Urban area and agricultural fields increased in from the upper toward the lower river watersheds. In addition to, a transformation of agricultural pattern into an institutional agriculture was characteristic in the middle and lower river basins. Water qualities of the Wangsuk river were usually better in the order of the upper, middle, and lower river, but they were fluctuated according to the site. Such fluctuation would due to self-purification of the river and land use pattern of the watershed as the non-point source. In this viewpoint, a strategy to manage the water quality in the level of watershed is urgently required.

  • PDF

Estimation of Soil Loss by Land Use in the Geum River Basin using RUSLE Model (RUSLE 모델을 이용한 금강 유역의 토지 이용별 토사유출량 추정)

  • Park, Jisang;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.619-625
    • /
    • 2006
  • Amount of soil loss is important information for the proper water quality management, In this research, annual average soil loss of the Geum River basin was estimated using RUSLE (Revised Universal Soil Loss Equation) and GIS (Geographic Information System). Input data were manipulated using ArcGIS ver. 8.3. From crop field which constitute 8.2% of the Geum River Basin, annual average soil loss was estimated as 53.6 ton/ha/year. From the rice paddy field which constitutes 20% of the Geum River Basin, soil loss was estimated as 33.5 ton/ha/year, In comparison, forestry area which constitutes 61.8% of the basin discharged 2.8 ton/ha/year, It could be known from this research that appropriate measures should be implemented to prevent excessive soil loss from the agricultural areas.

A Study on an Extraction of the Geometric Characteristics of the Pyongchang River basin by Using Geographic Information System (GIS를 활용한 유역의 하천 형태학적 특성 추출에 관한 연구)

  • Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.1 s.6
    • /
    • pp.115-119
    • /
    • 1996
  • odel). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor amThe main objective of this study is to extract of the geometric characteristics of the Pyongchang River basin, headwaters of the South Ran River. A GIS is capable of extracting various hydrological factors from DEM(digital elevation mong various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated. by using the function of ARC/INFO software as a GIS package. Scanned data is used for this study and it is converted to DEM data Various forms of representation of spatial data are handled in main modules and a GRID module of ARC/INFO. A GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flowdirection, stream networks and others are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics as parameters of watershed can be quantified by a using GIS technique. Resonable results can be obtained as compared with conventional graphic methods.

  • PDF