• Title/Summary/Keyword: Arbitrary Lagrangian Eulerian (ALE) method

Search Result 73, Processing Time 0.018 seconds

Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading

  • Abedini, Masoud;Zhang, Chunwei
    • Structural Engineering and Mechanics
    • /
    • 제77권4호
    • /
    • pp.441-461
    • /
    • 2021
  • Reinforced concrete (RC) columns are crucial in building structures and they are of higher vulnerability to terrorist threat than any other structural elements. Thus it is of great interest and necessity to achieve a comprehensive understanding of the possible responses of RC columns when exposed to high intensive blast loads. The primary objective of this study is to derive analytical formulas to assess vulnerability of RC columns using an advanced numerical modelling approach. This investigation is necessary as the effect of blast loads would be minimal to the RC structure if the explosive charge is located at the safe standoff distance from the main columns in the building and therefore minimizes the chance of disastrous collapse of the RC columns. In the current research, finite element model is developed for RC columns using LS-DYNA program that includes a comprehensive discussion of the material models, element formulation, boundary condition and loading methods. Numerical model is validated to aid in the study of RC column testing against the explosion field test results. Residual capacity of RC column is selected as damage criteria. Intensive investigations using Arbitrary Lagrangian Eulerian (ALE) methodology are then implemented to evaluate the influence of scaled distance, column dimension, concrete and steel reinforcement properties and axial load index on the vulnerability of RC columns. The generated empirical formulae can be used by the designers to predict a damage degree of new column design when consider explosive loads. With an extensive knowledge on the vulnerability assessment of RC structures under blast explosion, advancement to the convention design of structural elements can be achieved to improve the column survivability, while reducing the lethality of explosive attack and in turn providing a safer environment for the public.

조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가 (Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance)

  • 박제홍;장준환
    • 한국산학기술학회논문지
    • /
    • 제20권8호
    • /
    • pp.8-14
    • /
    • 2019
  • 조류 충돌은 항공 운항에서 안전에 관한 가장 중요한 설계 요인이며 고정익 및 회전익 항공기에 심각한 손상을 가하는 원인 중 하나로 분류된다. 본 연구를 통해 조류 충돌 과정을 오일러-라그랑지안 기법을 적용하여 헬리콥터에 장착된 복합재 블레이드의 응답을 MSC.DYTRAN 소프트웨어로 모사하였다. 임의의 라그랑지안 오일러리안(ALE) 방법과 적절한 상태 방정식을 선정하여 조류 모델링에 적용하여 복합재로 구성된 로터 블레이드의 앞전의 조류충돌 구조 건전성을 입증하였다. 조류충돌 해석을 적용하기 위해서 블레이드 앞전 물성치와 조류의 강도와 물성의 차이가 크기 때문에, 충돌 후 조류의 파편을 유체로 가정하여 Euler 요소로 적용하였다. 조류충돌 해석을 통해 설계된 로터 블레이드의 앞전 구조는 조류 충돌에 대해 새의 크기(50.8mm)를 적용하여 TSAI-FILL 파괴기준으로 1.18의 여유마진을 확인하였다. 복합재 블레이드의 조류충돌 해석 결과는 충분히 신뢰성을 가진 것으로 평가되며 다양한 해석조건으로 시험을 대체할 것으로 평가할 수 있다. 향후 제시된 방법으로 다양한 하중 조건, 다양한 조류 모델링을 적용하여 로터 블레이드의 구조 안정성을 평가할 수 있다.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • 제1권4호
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.