• Title/Summary/Keyword: Arabian light crude oil

Search Result 9, Processing Time 0.027 seconds

Characterization of Oil Degrading Bacterium Pseudomonas sp. BCK-1 Isolated from the Coastal Water of Yosu, Korea (여수주변해역에서 분리한 유류분해세균 Pseudomonas sp. BCK-1의 특성)

  • KOO Hoen-Seo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.2
    • /
    • pp.145-150
    • /
    • 2001
  • A marine bacterium having a high oil-degrading activity was isolated from the coastal water of Yosu, Korea, identified as Pseudomonas sp. and named Pseudomonas sp. BCK-1. The optimal temperature, pH and NaCl concentration for cell growth was $30^{\circ}C$, 7.0 and $3\%$ (w/v), respectively. After cultivation at $30^{\circ}C$, 180 rpm in 250 mL erlenmeyer flask for 72 and 168 hours, $2\%$ (w/v) arabian light crude oil (ACO) and bunker C oil (BCO) which are considered to be hardly biodegradable compounds were degraded $92\%$ (w/w) and $72\%$ (w/w), respectively.

  • PDF

Acinetobacter sp. A54에 의한 Arabian Light 원유의 분해

  • Lee, Chang-Ho;Kim, Hee-Sik;Suh, Hyun-Hyo;Choi, Soung-Hun;Oh, Hee-Mock;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.520-526
    • /
    • 1997
  • Bacterial strains which degrade Arabian Light crude oil were isolated by enrichment culture from oil-spilled soil. The strain A54 was finally selected after testing emulsifying activity and oil conversion rate. Strain A54 was identified as a Acinetobacter sp. based on the morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on Arabian Light crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were as follows; 25$\circ$C for temperature, 7,5 for pH, 2.0% for NaCl concentration and 2.0% for crude oil concentration. Additionally, the optimal concentration of NH$_{4}$NO$_{3}$, and K$_{2}$HPO$_{4}$, were 12.5 mM and 0.057 mM, respectively. Cell growth and emulsifying activity as a function of time were also determined. Crude oil degradation and the reduction of product peaks were identified by the analysis of remnant oil by gas chromatography. Approximately 63% of crude oil were converted into a form no longer extractable by mixed organic solvents.

  • PDF

Isolation and Characterization of Oil Degrading Bacteria from Southern Sea of Korea (남해안 해수로부터 원유 분해 세균의 분리 및 특성)

  • 김학주;김봉조;공재열;구헌서
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2000
  • A marine bacterium having a high oil-degrading activity was isolated form the oil-polluted southern sea of Korea, and was identified as Pseudomonas aeruginosa and was named Pseudomonas aeruginosa BYK-2. The optimal tmeperatur, culture time, pH and NaCl concentration for biosurfactant production and cell growth showed $25^{\circ}C$, 48h, 7.0 and 0%(w/v), respectively. After cultivation at $25^{\circ}C$, 180 rpm in 250 mL erlenmeyer flask for 7days, 1%(w/v) arabian light crude oil and bunker C oil which are considered to be hardly degradable compounds were degraded 92.1%(w/w) and 76%(w/w) respectively. And then, cell adherence was measured on various carbon sources. The cell adherence indicated over 80% on hydrocarbons(arabian light crude oil, kuwait curde oil, bunker C oil, n-paraffine, n-hexadecane, n-tetradecane) as carbon sources. Lecithin among fatty acids(oleic acid, olive oil, lecithin) showed highest cell adherence of 91.5%. The cell adherence of sugars(arabinose, trehalose, dextrose, galactose, lactose, fructose, maltose, sorbitol, sucrose) observed to be less than 70% except for arabinose, galactose, sorbitol and sucrose.

  • PDF

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

Biodegradation of crude oil in soil slurry phase by Nocardia sp.

  • Ko, Bum-Jun;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.114-117
    • /
    • 1996
  • Biodegradation potential of crude oil has been studied in liquid and soil slurry culture. Studies were performed to optimize the factors affecting metabolic activity. Arabian Light(sulfur content 1%) was used as a representative crude oil and Nocardia sp. was selected as an oil degrading microorganism based on its ability to degrade and emulsify Effects of various nutritional and environmental conditions as well as emulsification and surface tension were observed. Tentative optimization of environmental and nutritional condition were as follow; pH 8, sodium nitrate as inorganic nitrogen source, yeast extract 0.05%, phosphate concentration 0.25% and glucose addition of 1.0% (w/v basis), extent of degradation to 78 %.

  • PDF

Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun;Lee, Jung-Hyun;Oh, Young-Sook;Bae, Kyung-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.128-135
    • /
    • 1999
  • Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

  • PDF

Biodegradation of Crude oil by Marine Bacterium Pseudomonas sp. CHCS-2 and Composition of the Biosurfactant (해양세균 Pseudomonas sp. CHCS-2에 의한 원유분해 및 생물유화제의 성분 분석)

  • 김학주;김봉조;하순득;황선희;공재열
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.192-197
    • /
    • 1999
  • marine bacterium Pseudomonas sp. CHCS-2 produced the biosurfactant in the culture broth which contained 2%(w/v) arabian light crude oil and the productivity of biosurfactant was increased with the addition of glucose. The crude oil in the culture broth was degraded by this strain and carbon chain of $_nC_{12}~_nC_{22}$ was completely degradaded during the incubation for 196 h. The crude biosurfactant was purified by Amberlite XAD-7, Sepharose CL-4B and DEAE-Sepharose CL-6B column chromatography. Therefore, 0.21g/L of the purified biosurfactnat was obtained. The purified biosurfactant was a type of lipoprotein and the molecular weight was estimated as 67kDa by SDS-PAGE. The lipid composition was identified as octadecanoic acid by gas chromatography/mass spectrometry. And then, the N-terminal amino acid sequence of the protein was determined as Ser-Val-lle-Asn-Thr-lle-X-Met-lle-Gly-Gln-Gln- and the sequence did not show homology to any other known lipoprotein. Therefore, the purified lopoprotein was predicted novel biosurfactant.

  • PDF

Characterization of Glycolipid Biosurfactants from an Isolated Strain of Pseudomonas aeruginosa YPJ80

  • Cho, Joong-Hoon;Jeong, Yong-Leen;Park, Oh-Jin;Yoon, Byung-Dae;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.645-649
    • /
    • 1998
  • A glycolipid type of biosurfactants was obtained from a strain which had been isolated from soil. The cell was identified as Pseudomonas aeruginosa from taxonomic characteristics and was designated as YPJ80. Thin layer chromatography and deoxyhexose detection tests were done to verify the type of biosurfactant. Critical micelle concentration (CMC) of the surfactant was observed to be 50 ppm and the minimum surface tension was 30.1 mN/m. As an emulsifier, YPJ80 biosurfactant was superior to emulsan in the emulsification of crude Arabian light oil.

  • PDF

Microcosm Study for Bioremediation of Oil-Contaminated Pebble Environments (자갈로 구성된 미소환경에서 미생물제제에 의한 유류분해)

  • Sim, Doo-Suep;Sohn, Jae-Hak;Kim, Sang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.101-107
    • /
    • 1998
  • Biological treatment of Arabian light crude oil-contaminated pebble was investigated in laboratory microcosms after supplementation with inorganic nutrients and oil-degrading microorganisms. Glass columns ($10cm{\times}20cm$) were used as microcosms and each microcosm was filled with pebbles of diameter less than 40 mm. After initial oil contamination of 2.4% (w/v), Inipol EAP-22 or slow release fertilizer (SRF) was added as inorganic nutrients and microorganisms were sprayed over pebbles. When $C_{17}$/pristane and $C_{18}$/phytane ratios were used as a marker for oil biodegradation, both ratios for microcosm supplemented with SRF and microorganisms were the lowest (below detectable range) after 92 days. Elimination of oil by abiotic processes, however, were minimal with decrease of $C_{17}$/pristane and $C_{18}$/phytane ratios from 3.55 and 2.41 to 3.06 and 1.50, respectively. The numbers of heterotrophic and oil-degrading microorganisms, and biological activity (dehydrogenase activity) corresponded to the course of biodegradation activities in all microcosms. During the whole experimental period, there was no significant nutrient deficiency only in the microcosm with SRF and microorganisms. It seemed that a continuous supply of inorganic nutrients using SRF was the most important factor for the successful performance of biological treatment in oil-contaminated pebbles.

  • PDF