• Title/Summary/Keyword: Aquatic animal

Search Result 344, Processing Time 0.019 seconds

Evaluation of Commercial Diets and Replacement of Raw Fish with Formulated Diets in Moist Pellet for Olive Flounder (Paralichthys olivaceus) (시판 넙치사료의 평가와 모이스트펠렛사료중 냉동어류를 분말배합사료로 대치)

  • KIM Kyu-Il;PARK Hak-Moon;HYUN Young-Sun;YANG Chang-Jin
    • Journal of Aquaculture
    • /
    • v.6 no.3
    • /
    • pp.213-219
    • /
    • 1993
  • Two studies were carried out: to compare commercial flounder diets (C1-C6) with a laboratory-formulated diet (S), and to evaluate moist pellet (MP) prepared with or without raw fish for olive flounder culture. In experiment I, three replicates of 20 fish (42 g in average) each were fed S or each of C1-C6 for four weeks at $17^{\circ}C. For experiment 2, three replicates of 400 fish (78 g in average) each were fed $100\%$ laboratory-formulated grower diet (G), 50\%\;G+50\;%$ frozen mackerel containing $70\%$ moisture or $50\%\;C6$ (the same diet as that used in Exp. 1) +$50\%$ frozen mackerel for six weeks. Weight gain of fish fed S was significantly (P< 0.05) higher than that of fish fed C2 or C3 (26.7 vs 15.4 or 17.5g/fish over the 4-week period, respectively). Feed efficiency was significantly (p<; 0.05) lower in fish fed C2 than in fish fed S but was not different (P> 0.05) between the fish fed Sand the other commercial diets. No significant differences in weight gain were found among the fish fed $100\%\;G,\;50\%\;G+50\%$ frozen mackerel or $50\%$ C6+frozen mackerel. The results of our studies indicate that most of the commercial flounder diets can be improved for better growth, when we compared these diets with a laboratory-formulated diet, and the growth of flounder fed MP containing no raw fish was as good as that of those fed MP prepared with raw fish.

  • PDF

Role of CopA to Regulate repABC Gene Expression on the Transcriptional Level (전사 수준에서 repABC 유전자 발현을 조절하는 CopA 단백질의 역할)

  • Sam Woong Kim;Sang Wan Gal;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;In Gyu Baek;Kyu Ho Bang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2024
  • Since replication of plasmids must be strictly controlled, plasmids that generally perform rolling circle replication generally maintain a constant copy number by strictly controlling the replication initiator Rep at the transcriptional and translational levels. Plasmid pJB01 contains three orfs (copA, repB, repC or repABC) consisting of a single operon. From analysis of amino acid sequence, pJB01 CopA was homologous to the Cops, as a copy number control protein, of other plasmids. When compared with a CopG of pMV158, CopA seems to form the RHH (ribbon-helix-helix) known as a motif of generalized repressor of plasmids. The result of gel mobility shift assay (EMSA) revealed that the purified fusion CopA protein binds to the operator region of the repABC operon. To examine the functional role of CopA on transcriptional level, 3 point mutants were constructed in coding frame of copA such as CopA R16M, K26R and E50V. The repABC mRNA levels of CopA R16M, K26R and E50V mutants increased 1.84, 1.78 and 2.86 folds more than that of CopA wt, respectively. Furthermore, copy numbers owing to mutations in three copA genes also increased 1.86, 1.68 and 2.89 folds more than that of copA wt, respectively. These results suggest that CopA is the transcriptional repressor, and lowers the copy number of pJB01 by reducing repABC mRNA and then RepB, as a replication initiator.

Effects of Dietary Beef Tallow, Soybean Oil and Squid Liver Oil on Growth and Body Composition of the Korean Rockfish Sebastes schlegeli, and Biochemical Changes with Starvation (사료 지질원으로 우지, 대두유 및 오징어 간유 첨가에 따른 조피볼락 Sebastes schlegeli의 성장 및 체성분 변화와 절식시 체내 대사)

  • LEE Sang-Min
    • Journal of Aquaculture
    • /
    • v.7 no.1
    • /
    • pp.63-76
    • /
    • 1994
  • The effects of different dietary lipids on growth, body chemical composition, and nutrient partition of the Korean rockfish (43 g of initial mean weight) were studied. Fish were fed three experimental diets containing 1) $4.5\%$ squid liver oil, 2) $1\%$ squid liver oil and $3.5\%$ beef tallow, and 3) $1\%$ squid liver oil and $3.5\%$ soybean oil. Growth and feed efficiency were detarmined during a 19-week feeding period at water temperature of $15.5^{\circ}C$, and at the end of which body chemical compositions were analyzed. Remained fish were fasted for 45 days, and four fish were taken at 6, 12 and 24 hours, and 3, 15 and 45 days after the fasting to determine tissue compositions and hematological changes. Growth, feed efficiency, protein and lipid retention efficiency, hepatosomatic index(HSI), viscerosomatic index (VSI), and chemical composition of whole body and dorsal muscle were not affected by the different dietary lipids. Liver moisture content of fish fed squid liver oil diet was higher than that of fish fed beef tallow or soybean oil diet. Liver lipid content of fish fed beef tallow diet was higher than that of fish fed the other diets. Fatty acid composition of dorsal muscle and liver were affected by the different dietary lipids ; high levels of 20 : 5n-3 and 22 : 6n-3 from fish fed the diet containing squid liver oil, 18 : 1 from fish fed the diet containing beef tallow, and high 18 : 2n-6 and 18 : 3n-3 from fish fed the diet containing soybean oil were observed. Both HSI and VSI of fish fed three diets decreased with time after the begining of starvation. Liver glycogen did not change during the first 15 days of starvation and decreased thereafter, and that was not affected by the different dietary lipids. Lipid and protein contents in the dorsal muscle of fish decreased up to 15 days of starvation and remained unchanged thereafter, these were not different from each other. Glucose, free fatty acid, triglyceride and phospholipid concentrations in Fish serum were varied for the first 15 days of starvation, after that the concentrations of fish serum remained relatively stable in all the treatment groups with prolonged starvation. The results indicate that Korean rockfish can utilize fish oil, animal fat or vegetable oil equally as energy source when n-3HUF A is adquate.

  • PDF

Influence of Oxygen Concentration on the Food Consumption and Growth of Common Carp, Cyprinus carpio L. (잉어 Cyprinus carpio의 먹이 섭취량과 성장에 미치는 용존산소량의 영향)

  • SAIFABADI Jafar;KIM In-Bae
    • Journal of Aquaculture
    • /
    • v.2 no.2
    • /
    • pp.53-90
    • /
    • 1989
  • Feeding proper level of ration matchable with the appetite of fish will enhance production and also prevent waste of food and its consequence, side effects such as pollution of culture medium. To pursue this goal, elaborate studies on dissolved oxygen concentrations- as the major force in inducing appetite and the growth outcome are necessary. The growth of common carp of 67, 200, 400, 600, and 800 gram size groups was studied at oxygen concentrations ranging from 2.0 to 6 mg/$\iota$ in relation to rations from 1 to as many percent of the initial body weight as could be consumed under constant temperature of $25^{\circ}C$. The results from the experiments are summarized as followings; 1. Appetite: The smaller fish exhibited higher degree of appetite than the bigger ones at the same oxygen concentrations. The bigger the fish the less tolerant it was to the lower oxygen thersholds, and the degree of tolerence decreased as ration level increased. 2. Growth : Growth rate (percent per day) increased - unless consumption was suppressed by low oxygen levels- as the ration was increased to maximum. In case of 67 g fish, it reached the highest point of $5.05\%$ / day at $7\%$ ration under 5.0 mg/$\iota$ of oxygen. In case of 200 g fish, the maximum growth rate of $3.75\%$/day appeared at the maximum ration of $6\%$ under 5.5 mg/$\iota$ of oxygen. In 400 g fish, the highest growth of $3.37\%$/day occurred at the maximum ration of $5\%$ and 6.0 mg/$\iota$ of oxygen. In 600 g fish, the highest growth rate of $2.82\%$ /day was at the maximum ration of $4\%$ under 5.5 mg/$\iota$ oxygen. In case of 800g fish, the highest growth rate of $1.95\%$/day was at maximum tested ration of $3\%$ under 5.0 mg/$\iota$ oxygen. 3. Food Conversion Efficiency: Food conversion efficiency ($\%$ dry feed converted into the fish tissue) first increased as the ration was increased, reached maximum at certain food level, then started decreasing with further increase in the ration. The maximum conversion efficiency stood at higher feeding rate for the smaller fish than the larger ones. In case of 67 g fish, the maximum food conversion efficiency was at $4\%$ ration within 3.0-4.0 mg/$\iota$ oxygen. In 200g fish, the maximum efficiency was at $3\%$ ration within 4.0-4.5 mg/$\iota$ oxygen. In 400g fish, the maximum efficiency was at $2\%$ ration within 4.0 - 4.5 mg/$\iota$ oxygen. In 600 and 800g fish, the maximum conversion efficiency shifted to the lowest ration ($1\%$) and lower oxygen ranges. 4. Behaviour: The fish within uncomfortably low oxygen levels exhibited suppressed appetite and movements and were observed to pass feces quicker and in larger quantity than the ones in normal condition; in untolerably low oxygen the fish were lethargic, vomited, and had their normal skin color changed into pale yellow or grey patches. All these processes contributed to reducing food conversion efficiency. On the other hand, the fish within relatively higher oxygen concentrations exhibited higher degree of movement and their food conversion tended to be depressed when compared with sister groups under corresponding size and ration within relatively low oxyen level. 5. Suitability of Oxygen Ranges to Rations: The oxygen level of 2.0- 2.5 mg/$\iota$ was adequate to sustain appetite at $1\%$ ration in all size groups. As the ration was increased higher oxygen was required to sustain the fish appetite and metabolic activity, particularly in larger fish. In 67g fish, the $2\%$ ration was well supported by 2.0-2.5 mg/$\iota$ range; as the ration increased to $5\%$, higher range of 3.0-4.0 mg/$\iota$ brought better appetite and growth; from 5 till $7\%$ (the last tested ration for 67 g fish) oxygen levels over 4.0 mg/$\iota$ could sustain appetite. In 200 g fish, the 2 and $3\%$ rations brought the best growth and conversion rates at 3.5-4.5 mg/$\iota$ oxygen level; from 3 till $6\%$ (the last tested ration at 200 g fish) oxyge groups over 4.5 mg/$\iota$ were matchable with animal's appetite. In 400, 600, and 800 g fish, all the rations above $2\%$ had to be generally supported with oxygen levels above 4.5 mg/$\iota$.

  • PDF