• Title/Summary/Keyword: Aquatic and terrestrial fungi

Search Result 4, Processing Time 0.021 seconds

Mycota of Well Waters in Assiut, Egypt

  • El-Nagdy, M.A.
    • Mycobiology
    • /
    • v.28 no.4
    • /
    • pp.197-201
    • /
    • 2000
  • The distribution and occurrence of aquatic zoosporic and terrestrial fungi were investigated in 21 well waters in Assiut governorate, Egypt. Using a zoospore capture technique, 923 colonies of aquatic freshwater fungi were recovered from well waters, out of which 811 colonies reached sexual maturity. These colonies were assigned to 23 species which belong to 11 genera. The most common genera were Achlya, Saprolegnia and Dictyuchus. Using two types of media, 35 species in addition to 2 varieties of terrestrial fungi which belong to 18 genera were also recovered. The most frequent glucophilic genera (recovered on glucose-Czapek's agar at $28^{\circ}C$) were Aspergillus, Penicillium and Fusarium. The results obtained on cellulose-Czapek's agar at $2^{\circ}C$ were basically similar to those on glucose agar and the most frequent genera were Aspergillus, Penicillium and Fusarium followed by Chaetomium and Cephalosporium.

  • PDF

Community Analysis of Endophytic Fungal strains Isolated from the Roots of Plants Inhabiting Mujechi-neup (무제치늪에 자생하는 식물의 뿌리에서 분리한 내생진균의 군집분석 및 다양성 분석)

  • Cheon, Woo-Jae;Choi, Hye-Rim;Kim, Hyun;Nam, Yoon-Jong;Oh, Yoosun;Jeong, Minji;Lee, Nan-Yeong;Ha, Sang-Chul;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1446-1457
    • /
    • 2016
  • Wetlands exhibit intermediate characteristics of both terrestrial and aquatic ecosystems, and the biodiversity is rich in these unique biological habitats. The symbiotic relationships between plants and fungi that inhabit these wetlands play an important role in natural resource management, biodiversity, and conservation. Accordingly, the mujechi, having academic value for the study of the natural environment, was investigated in terms of genetic diversity of endophytic fungi, which inhabit the roots of wild plants. The internal transcribed spacer (ITS) region was amplified to identify fungal strains. In total, 226 strains were isolated and categorized into three phyla, seven classes, 10 orders, 22 families, and 31 genera. In plants by endophytic fungi were classified in Isachne globosa (Ig) to 19 genera, Scirpus karuisawensis (Sk) to 11 genera, Utricularia racemosa (Ur) to 19 genera, and one incertae sedis, Eriocaulon decemflorum (Ed) to 11 genera. The fungal taxa was identified the genera Acephala (19.9%), Tolypocladium (16.3%), Neopestalotiopsis (11.5%), and Perenniporia (7.1%). The fungal group isolated from Isachne globosa (Ig) grew the largest number of isolated fungal strains. After comprehensive evaluation, the endophytic fungal group from Utricularia racemosa (Ur) ranked highest in diversity analyses. From the roots of wild plant in mujechi-neup, it confirmed the distribution and diversity of endophytic fungi. This study provides the basic data to understand fungal community structure in peat wetlands.

Occurrence of Fungal Species and Mycotoxins from Decayed Sugarcane (Saccharrum officinarum) in Egypt

  • Abd-Elaah, Gamalat A.;Samya, Soliman A.
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.77-83
    • /
    • 2005
  • Seventy-three fungal species belonging to forty-three genera were isolated from 40 samples of Saccharrum officinarum (collected from Naage-Hamadi canal in Qena Governorate, Egypt). Aspergillus, Trichoderma, Mucor and Pythium were the most common genera on the two isolation media. The dominant species of Aspergillus were A. niger, A. flavus, A. ustus, A. terreus and A. wentii. Some species were dominant on 40 g/l sucrose such as Aspergillus niger, A. flavus, Emericella nidulans, Trichoderma viride, Torula herbarum and Mamaria echinoeotryoides, while the dominant species on 10 g/l glucose were Mucor circinelloides, Aspergillus niger, Torula herbarum and Trichoderma viride. Mycotoxins including aflatoxins $B_1,\;B_2,\;G_1\;and\;G_2$, zearalenone and diacetoxyscirpenol were detected in the examined samples of Saccharrum officinarum. The mycelial growth of A. flavus, A. niger, Fusarium moniliforme and Torula herbarum decreased with the increase in Dimethoate concentrations, although 25 ppm was less effective than the higher levels of the insecticide ($75{\sim}200\;ppm$). Dimethoate stimulated the activity of Go-Tin A. niger, F. moniliforme and T. harbarum, while the Go-T activity was inhibited in A. flavus with the Dimethoate treatments.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.