• Title/Summary/Keyword: Aqua/Terra MODIS

Search Result 49, Processing Time 0.022 seconds

Accuracy Assessment of Atmospheric Sounding Data from Terra/MODIS

  • Lee, Mi-Suk;Kim, Young-Seup;Kwon, Byung-Hyuk;Hong, Ki-Man;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.201-203
    • /
    • 2003
  • Two MODIS instruments on board the Terra and Aqua Satellites are operational for global remote sensing of the land, ocean and atmosphere. Atmospheric sounding data with a high spatial resolution from MODIS will provide a wealth of useful information. The vertical air temperature and moisture data were retrieved using the MODIS data, and compared with the radiosonde data obtained in the Korean Peninsula. The correlation coefficient are 0.99 and 0.89 for air temperature and moisture cases, respectively. Air temperature data were relatively good agreement, but the moisture data from MODIS were underestimated.

  • PDF

NASA EOS DB Receiving System Development by KARI

  • Ahn, Sang-il;Koo, In-Hoi;Yang, Hyung-Mo;Hyun, Dae-Hwan;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.89-94
    • /
    • 2002
  • Recently, DARI implemented the receiving and processing system for MODIS sensor data from NASA EOS satellites (TERRA and AQUA). This paper shows the development strategy considered, system requirement derived, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of pass operations activities from RF signal reception to level-1 processing.

  • PDF

NASA EOS DB Receiving System Development by KARI

  • Ahn, Sang-Il;Koo, In-Hoi;Yang, Hyung-Mo;Hyun, Dae-Hwan;Choi, Hae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Recently, KARI implemented the receiving and processing system for MODIS sensor data from NASA EOS satellites (TERRA and AQUA). This paper shows the development strategy considered, system requirement derived, system design, characteristic and test results of processing system. System operation concept and sample image are also provided. Implemented system was proven to be fully operational through lots of pass operations activities from RF signal reception to level-1 processing.

The Reflectance Patterns of land cover During Five Years ($2004{\sim}2008$) Based on MODIS Reflectance Temporal Profiles (시계열 MODIS를 이용한 토지피복의 반사율 패턴: 2004년$\sim$2008년)

  • Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.113-126
    • /
    • 2009
  • With high temporal resolution, four times receiving during a day, MODIS images from Terra and Aqua satellites provide several advantages for monitoring spacious land. Especially, diverse MODIS products related to land, atmosphere, and ocean have been provided with radiance MODIS images. The products such as surface reflectance, NDVI, cloud mask, aerosol etc. are based on theoretical algorithms developed in academic areas. Comparing with other change detection studies mainly using the vegetation index, this study investigated temporal surface reflectance of landcovers for five years from 2004 to 2008. The near infrared (NIR) reflectance in urbanized and burned areas showed considerable difference before and after events. The specific characteristics of surface reflectance temporal profiles are possibly useful for the detection of landcover changes and classification.

DIURNAL HEATING IN THE OKHOTSK SEA UNDER ANTICYCLONIC CONDITIONS: MULTISENSOR STUDY

  • Mitnik, Leonid;Alexanin, Anatoly;Mitnik, Maia;Alexanina, Marina
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1027-1030
    • /
    • 2006
  • Development of diurnal warming in the open Okhotsk Sea during the daytime and calm conditions was studied using sea surface temperature (SST) fields retrieved from NOAA AVHRR, Terra and Aqua MODIS, Aqua AMSR-E and ADEOS-II AMSR data. Sea surface wind fields were estimated from AMSR-E/AMSR measurements as well as were obtained from QuikSCAT scatterometer. Weak winds and cloudless conditions were observed in the central area of anticyclone, which moved slowly on 28-30 June 2003 east off Sakhalin. The area where the amplitude of the diurnal SST signal ${\Delta}T$ was significant also shifted slowly and had or circular or elongated shape. The ${\Delta}T$ was estimated relative to the SST values in the areas surrounding the centre of anticyclone where wind speed W exceeded 5- 6 m/s. The diurnal variations of SST, day-night differences were computed using NOAA-12 and NOAA-16 AVHRRderived data. Analysis of simultaneous SST and W fields showed that the increase of W from 0 to 5-6 m/s causes the decrease of ${\Delta}T$ to zero. Maximum warming exceeded $8^{\circ}C$ and was observed in the centre of anticyclone where W = 0 m/s. So strong heating was likely due to the increased chlorophyll a concentration in the area under study that follows from analysis of satellite ocean colour data.

  • PDF

Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia (동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교)

  • Kim, Eun-kyu;Lee, Kyu-Tae;Jung, Myeong-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.607-615
    • /
    • 2017
  • The aerosol optical thickness data retrieved by Moderate Resolution Imaging Spectrometer (MODIS) of Terra & Aqua and Meteorological Imager (MI) of Communication Ocean and Meteorological Satellite (COMS) are analyzed and compared with the measurement data of Aerosol Robotic Network (AERONET) in Northeast Asia. As the result, the aerosol optical thickness retrieved by MODIS and MI were well agreed at ocean region but quite different at cloud edge and barren surface. The reason was that MODIS aerosol optical thickness was retrieved using the visible and infrared channels but MI was retrieved with the visible channel only. Consequentially, the thin cloud be misinterpreted as aerosol by MI and the difference between MODIS and MI aerosol optical thicknesses could be occurred with Normal Distribution Vegetation Index (NDVI) and land surface property. Therefore, the accuracies of clear/cloud region and surface reflectivity are required in order to improve the aerosol optical thickness algorithm by MI.

Fundamental Research on Spring Season Daytime Sea Fog Detection Using MODIS in the Yellow Sea

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.4
    • /
    • pp.339-351
    • /
    • 2016
  • For the safety of sea, it is important to monitor sea fog, one of the dangerous meteorological phenomena which cause marine accidents. To detect and monitor sea fog, Moderate Resolution Imaging Spectroradiometer (MODIS) data which is capable to provide spatial distribution of sea fog has been used. The previous automatic sea fog detection algorithms were focused on detecting sea fog using Terra/MODIS only. The improved algorithm is based on the sea fog detection algorithm by Wu and Li (2014) and it is applicable to both Terra and Aqua MODIS data. We have focused on detecting spring season sea fog events in the Yellow Sea. The algorithm includes application of cloud mask product, the Normalized Difference Snow Index (NDSI), the STandard Deviation test using infrared channel ($STD_{IR}$) with various window size, Temperature Difference Index(TDI) in the algorithm (BTCT - SST) and Normalized Water Vapor Index (NWVI). Through the calculation of the Hanssen-Kuiper Skill Score (KSS) using sea fog manual detection result, we derived more suitable threshold for each index. The adjusted threshold is expected to bring higher accuracy of sea fog detection for spring season daytime sea fog detection using MODIS in the Yellow Sea.

The Introduction to MODIS Ground Pre-processing System and Application Fields (MODIS 처리시스템 및 활용분야 소개)

  • 서두천;임효숙;전정남;김재관
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.271-276
    • /
    • 2003
  • The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) of Terra and Aqua satellites, launched in December 1999 and May 2002, has been directly received by Korea Aerospace Research Institute (KARI) ground station facility from July 2002. MODIS scans a swath width of 2330 km that is sufficiently wide to cover Korean peninsular, Yellow and East Sea at once. The MODIS has 36 spectral bands between 0.415 $\mu\textrm{m}$ and 14.235 $\mu\textrm{m}$, i.e., through the visible into the thermal infrared. MODIS has been observed active fires, floods, smoke transport, dust storms, severe storms since February of 2000. The satellite imagery obtained through the MODIS will be utilized for many application such as national territorial management, agriculture, natural environment, atmosphere and ocean, etc. In this study is to introduce various application field of MODIS imagery and data processing system.

  • PDF

Estimating Rice Yield Using MODIS NDVI and Meteorological Data in Korea (MODIS NDVI와 기상자료를 이용한 우리나라 벼 수량 추정)

  • Hong, Suk Young;Hur, Jina;Ahn, Joong-Bae;Lee, Jee-Min;Min, Byoung-Keol;Lee, Chung-Kuen;Kim, Yihyun;Lee, Kyung Do;Kim, Sun-Hwa;Kim, Gun Yeob;Shim, Kyo Moon
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.509-520
    • /
    • 2012
  • The objective of this study was to estimate rice yield in Korea using satellite and meteorological data such as sunshine hours or solar radiation, and rainfall. Terra and Aqua MODIS (The MOderate Resolution Imaging Spectroradiometer) products; MOD13 and MYD13 for NDVI and EVI, MOD15 and MYD15 for LAI, respectively from a NASA web site were used. Relations of NDVI, EVI, and LAI obtained in July and August from 2000 to 2011 with rice yield were investigated to find informative days for rice yield estimation. Weather data of rainfall and sunshine hours (climate data 1) or solar radiation (climate data 2) were selected to correlate rice yield. Aqua NDVI at DOY 233 was chosen to represent maximum vegetative growth of rice canopy. Sunshine hours and solar radiation during rice ripening stage were selected to represent climate condition. Multiple regression based on MODIS NDVI and sunshine hours or solar radiation were conducted to estimate rice yields in Korea. The results showed rice yield of $494.6kg\;10a^{-1}$ and $509.7kg\;10a^{-1}$ in 2011, respectively and the difference from statistics were $1.1kg\;10a^{-1}$ and $14.1kg\;10a^{-1}$, respectively. Rice yield distributions from 2002 to 2011 were presented to show spatial variability in the country.

Compatibility of MODIS Vegetation Indices and Their Sensitivity to Sensor Geometry (MODIS 식생지수에 미치는 센서 geometry의 영향과 센서 간 자료 호환성 검토)

  • Park, Sunyurp
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.1
    • /
    • pp.45-56
    • /
    • 2014
  • Data composite methods have been typically applied to satellite-based vegetation index(VI) data to continuously acquire vegetation greenness over the land surface. Data composites are useful for construction of long-term archives of vegetation indices by minimizing missing data or contamination from noise. In addition, if multi-sensor vegetation indices that are acquired during the same composite periods are used interchangeably, data stability and continuity may be significantly enhanced. This study evaluated the influences of sensor geometry on MODIS vegetation indices and investigated data compatibility of two difference vegetation indices, the Normalized Difference Vegetation Index(NDVI) and the Enhanced Vegetation Index(EVI), for potential improvement of long-term data construction. Relationships between NDVI and EVI turned out statistically significant with variations among vegetation covers. Due to their curvilinear relationships, NDVI became saturated and leveled off as EVI reached high ranges. Correlation coefficients between Terra- and Aqua-based vegetation indices ranged from 0.747 to 0.963 for EVI, and from 0.641 to 0.880 for NDVI, showing better compatibility for EVI compared to NDVI. In-depth analyses of VI outliers that deviated from regression equations constructed from the two different sensors remain as a future study to improve their compatibility.

  • PDF