• Title/Summary/Keyword: Aprotic

Search Result 131, Processing Time 0.022 seconds

Conformational Change of Optically Active [Co(acac)$_2$(diamine)]$^+$ Complexes in Some Organic Solvents

  • Kim, Yang;Oh Chang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.441-444
    • /
    • 1987
  • The circular dichroism(CD) spectra of the optically active [$Co(acac)_2(diamine)]^+$ complexes were measured in the several protic and aprotic solvents, where acac = acetylacetonate anion and diamine = ethylenediamine and trimethylenediamine. The degree of the CD variation in protic solvents was enhanced as the dielectric constant decreases except n-butanol and benzylalcohol. And the degree of the CD variation in aprotic solvents was roughly increased as both dipole moment and dielectric constant decrease except aromatic solvents and the solvents having no dipole moment. It was deduced that the CD variations of the complexes have been due to the conformational change of acetylacetonate ligands coordinated to Co(III) ion.

Reactivity of Superoxide Ion with Halogenonitriles and Dihalocarbons in Aprotic Media

  • 전승원;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1060-1064
    • /
    • 1995
  • The reactivity of superoxide ion (O2-.) with halogenated substrates is investigated by cyclic voltammetry and rotated ring-disk electrode method in aprotic solvents. The more positive the reduction potential of the substituted nitrile, the more facile is nucleophilic displacement by O2-.. The reaction rates of halogenonitriles with O2-. vary according to the leaving-group propensity of halide (Br > Cl > F). The relative reaction rates of other substituted nitriles are in the order of electron-withdrawing propensity of the substituent group (CN > C(O)NH2 > Ph ≒ CH2CN). The reaction of O2-. with dihalocarbons indicates that five-membered rings can be rapidly formed by the cyclization of substrate and O2-., and the relative rates of cyclization depend on the number of methylenic carbons {Br(CH2)nBr, [n=1 < 2 < 3 > 4 > 5]}. Mechanisms are proposed for the reaction of O2-. with halogenated substrates.

Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure

  • Kim, Song-I;Hwang, So-Jeong;Park, Yoon-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1199-1203
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for Michael-type reactions of 1-(X-substituted phenyl)-2-propyn-1-ones (2a-f) with a series of alicyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ value increases as the incoming amine becomes more basic and the substituent X changes form an electron-donating group (EDG) to an electron-withdrawing group (EWG). The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}$ = 0.48 - 0.51. The Hammett plots for the reactions of 2a-f exhibit poor correlations but the corresponding Yukawa-Tsuno plots result in much better linear correlations with ${\rho}$ = 1.57 and r = 0.46 for the reactions with piperidine while ${\rho}$ = 1.72 and r = 0.39 for those with morpholine. The amines employed in this study are less reactive in MeCN than in water for reactions with substrates possessing an EDG, although they are ca. 8 pKa units more basic in the aprotic solvent. This indicates that the transition state (TS) is significantly more destabilized than the ground state (GS) in the aprotic solvent. It has been concluded that the reactions proceed through a stepwise mechanism with a partially charged TS, since such TS would be destabilized in the aprotic solvent due to the electronic repulsion between the negative-dipole end of MeCN and the negative charge of the TS. The fact that primary deuterium kinetic effect is absent supports a stepwise mechanism in which proton transfer occurs after the rate-determining step.

Redox Reaction Mechanisms of Thorium (IV) Complexes with Crown Ethers in Dimethylsulfoxide (디메틸술폭시드용매중에서 Thorium (IV)-Crown Ether 착물의 산화-환원 반응메카니즘)

  • Jung, Hak-Jin;Jung, Oh-Jin;Suh, Hyouck-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.250-257
    • /
    • 1987
  • The electrical conductances for the thorium (IV) complexes with crown ethers have been measured in DMSO, and water solvents, and the oxidation-reduction reaction mechanisms, electron number and diffusion coefficients in the reversible reduction process have been examined by polarography and cyclic voltammography. The dissociation mole ratio of $Th^{4+}$ and nitrate ion are 1:1 and in aprotic solvent, and 1:4 in protic solvent like as water. The limiting molar conductances of all complexes in aprotic solvent have been found to be in the range of $92.2{\times}159$ $ohm^{-1}cm^2mol^{-1}$. In aprotic solvent, DMSO, the reduction of each complex is reversible by one electron reduction of one step, and the range of diffusion coefficients is obserbed to be $5.83\;10^{-6}{\sim}6.90{\times}10^{-6}$. The complexes which have reduction step were hydrolyzed above at 1.8volt with reference saturated calomel electrode, generating the hydrogen gas. The reaction mechanisms of thorium (IV)-crown ether complexes appear as follows. ${Th_m(IV)L_n(H_2O)_x(NO_3)_{4y}}_=^{DMSO} {\overline{{Th_m(IV)L_n(H_2O)_x(NO_3)_{4y-1}}}^+ + NO_3-$

  • PDF

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1911-1914
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Electrochemical Studies of Lithium Ion Battery Current Collector in the Aprotic Electrolytes: I. Al Current Collector (비수용성 전해질내 리튬이온전지용 집전체의 전기화학적 특성 연구: I. Al 집전체)

  • Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.620-627
    • /
    • 1999
  • Electrochemical properties of the Al current collector being used in lithium ion batteries have been studied in the 4 different aprotic electrolytes(1 M $LiBF_4$ EC : DMC, 1 M $LiBF_4$ EC : EMC. 1 M $LiPF_6$ EC : DMC. 1 M $LiPF_6$ EC : EMC) employing cyclic voltammetry and impedance measurement. Al electrode showed a wide range of the electrochemical window(0.5~4.1 V vs. $Li/Li^{+}$). However, solid interfacial materials has been formed on the Al surface due to reduction of impurities($H_2O$, $O_2$, etc), lithium salts, and electrolytes at low applied potentials, and aluminum oxides in the highly oxidizing potential as well. Especially, Al current collector was susceptible to localized in consequence of impurities in electrolytes.

  • PDF

Ozone Oxidation of Trans-3-hexene with/without Pyridine (Pyridine 존재여부에 따른 Trans-3-hexene의 오존 산화 반응)

  • Kim, Chul G.;Hong, Won P.
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.579-587
    • /
    • 1992
  • It was explored, whether the usual course of the ozonolysis of olefins can be modified with the help of pyridine. In the First step, the ozone oxidation of trans-3-hexene was performed with and without pyridine in the inert solvents n-pentane and dichloromethane. In addition, base catalyzed decompositions of monomeric and polymeric ozonides were also examined to identify the reaction mechanism. The reaction products were identified by modern analytical tools. The results of this work showed that reactions of ozone with olefins in the absence of pyridine in aprotic solvents gave, one hand, dominantly peroxidic products, namely monomeric and polymeric ozonides. The other hand, they in the presence of pyridine gave only the non-peroxidic products, namely propionaldehyde and rearranged propionic acid without peroxidic products. It seems, also, that the pyridine-catalyzed isomerization of the Criegee zwitterion of trans-3-hexene to give propionic acid takes place in the ozone oxidation of trans-3-hexene.

  • PDF