• Title/Summary/Keyword: Approximate Equation

Search Result 487, Processing Time 0.026 seconds

Transient Elastodynamic Analysis By BEM Using DDM (DDM과 경계요쇼법을 이용한 동탄성 해석)

  • Shin, Dong-Hoon;Owatsiriwong, Adisorn;Park, Han-Gyu;Park, Kyung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.534-535
    • /
    • 2009
  • This paper deals with BEM analysis of transient elastodynamic problems using domain decomposition method and particular integrals. The particular method is used to approximate the acceleration term in the governing equation. The domain decomposition method is examined to consider multi-region problems. The domain of the original problem is subdivided into sub-regions, which are modeled by the particular integral BEM. The iterative coupling employing Schwarz algorithm is used for the successive update of the interface boundary conditions until convergence is achieved. The numerical results, compared with those by ABAQUS, demonstrate the validity of the present formulation.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF

Modal Nodal Transport Analysis

  • Johnson, R.Douglas
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.121-128
    • /
    • 1971
  • A unified modal-nodal expansion of tile angular distribution of neutron flux in one spatial dimension is considered, following the proposal of Harms. Several standard nodal and/or modal methods of analysis are shown to be specializations of this technique. The modal-nodal moment from of the mono-energetic transport equation with isotropic sources and scattering is derived and the infinite medium eigenvalue problem solved. The technique is shown to yield results which approximate the exact value of the inverse diffusion length in non-multiplying media more accurately than standard methods of equal or somewhat greater computational complexity.

  • PDF

Defect Shape Recovering by Parameter Estimation Arising in Eddy Current Testing

  • Kojima, Fumio
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.622-634
    • /
    • 2003
  • This paper is concerned with a computational method for recovering a crack shape of steam generator tubes of nuclear plants. Problems on the shape identification are discussed arising in the characterization of a structural defect in a conductor using data of eddy current inspection. A surface defect on the generator tube ran be detected as a probe impedance trajectory by scanning a pancake type coil. First, a mathematical model of the inspection process is derived from the Maxwell's equation. Second, the input and output relation is given by the approximate model by virtue of the hybrid use of the finite element and boundary element method. In that model, the crack shape is characterized by the unknown coefficients of the B-spline function which approximates the crack shape geometry. Finally, a parameter estimation technique is proposed for recovering the crack shape using data from the probe coil. The computational experiments were successfully tested with the laboratory data.

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.

New Parameterizations for Multi-Step Unconstrained Optimization

  • Moghrabi, I.A.;Kassar, A.N
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • We consider multi-step quasi-Newton methods for unconstrained optimization. These methods were introduced by Ford and Moghrabi [1, 2], who showed how interpolating curves could be used to derive a generalization of the Secant Equation (the relation normally employed in the construction of quasi-Newton methods). One of the most successful of these multi-step methods makes use of the current approximation to the Hessian to determine the parameterization of the interpolating curve in the variable-space and, hence, the generalized updating formula. In this paper, we investigate new parameterization techniques to the approximate Hessian, in an attempt to determine a better Hessian approximation at each iteration and, thus, improve the numerical performance of such algorithms.

  • PDF

A Study on Design of Functionally graded Materials (경사기능재료의 설계에 관한 연구)

  • 최덕기;경사기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.144-154
    • /
    • 1998
  • A functionally graded material is a nonhomogeneous material, which is composed of several different materials to maintain structural rigidity and endure high temperature loads. An analytical method is presenter to solve the unsteady heat conduction equation for nonhomogeneous materials. A one-dimensional infinite plate made of functionally graded material is considered. The approximate Green's function solution is derived and to be used to obtain the temperature distribution them the stress distributions may be obtained. The volume fraction, the porosity, the stress difference, and the stress ratio are the design parameters and are to be used to set up a systematic design procedure.

  • PDF

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.

Second order VOF convection model in curvilinear coordinates

  • Kim, Seong-O.;Hwang, Young-dong;Kim, Young-In.;Chang, Moon-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.392-399
    • /
    • 1997
  • An approximation technique was developed for the simulation of free surface flows in non-orthogonal coordinates. The main idea of this approach is to approximate VOF by the second order linear equation in the transformed domain on the assumption that the continuity of free surface would be maintained. The method was justified through a set of numerical test to examine if its original shape could be maintained when the circles are convected in uniform velocity in horizontal direction in curvilinear coordinates. Finally a simple problem was solved by applying the method to CFX4.1 general purpose CFDS code.

  • PDF

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF