• 제목/요약/키워드: Approach Piping System

검색결과 29건 처리시간 0.023초

신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가 (Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation)

  • 이상민;윤강옥;장윤석;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Methodology for predicting optimal friction support location to attenuate vibrational energy in piping systems

  • Minseok Lee;Yong Hoon Jang;Seunghun Baek
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1627-1637
    • /
    • 2024
  • This research paper proposes a novel methodology for predicting the optimal location of friction supports to effectively mitigate vibrational energy in piping systems. The incorporation of friction forces in the dynamic characteristics of the system introduces inherent nonlinearity, making its analysis challenging. Typically, numerical solutions in the time domain are employed to circumvent the complexities associated with finding analytic solutions for nonlinear systems. However, time domain analysis (TDA) can be computationally intensive and demand significant computational resources due to the intricate calculations stemming from nonlinearity. To address this computational burden, this study presents an efficient approach based on linear analysis to predict the ideal position for installing friction supports as a replacement for fixed supports. Furthermore, we investigate the relationship between the installation positions of friction supports and their effectiveness in absorbing vibrations using the harmonic balanced method (HBM). Both methodologies are validated by comparing the obtained results with those obtained through time domain analysis (TDA) using the finite element method (FEM).

PWSCC and System Engineering Development of Internal Inspection and Maintenance Methodology for RCS

  • Abdallah, Khaled Atya Ahmed;Mesquita, Patricia Alves Franca de;Yusoff, Norashila;Nam, GungIhn;Jung, JaeCheon;Lee, YoungKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.89-103
    • /
    • 2016
  • Due to safety of the plant, it became very clear the importance of study occurrence reactor coolant system (RCS) issues specially the primary water stress corrosion cracking (PWSCC). The Systems Engineering (SE) approach is characterized by the application of a structured engineering methodology for the design of a complex system or component. Robotic devices have been used for internal inspection, maintenance and performing remote welding and inspection in high-radiation areas. In this paper, PWSCC overview and inlay and over lay welding methodology introduced, concept of robotic device that can be inserted into the piping via Steam Generator (SG) main way to access to primary piping of pressurized water reactor (PWR) is developed based on SE methodology. A 3D model of the inspection system was developed along with the APR1400 (Advanced Power Reactor)reactor coolant systems (RCS) and internals with virtual 3D simulation of the operation for visualization to prove the validity of the concept.

VIBRO-ACOUSTIC TROUBLESHOOTING SOLVES 5MW BOILERFEED PUMP TESTRING NOISE & VIBRATION PROBLEMS

  • Gielen, L.;Vandenbroeck, D.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.836-841
    • /
    • 1994
  • This paper describes the global vibro-acoustic troubleshooting approach, used to identify and separate different sources of noise and vibrations on a boilerfeed pump testrig. The pump serves for rotor dynamic research of a EC-funded BRITE-Euram profect. This approach resulted in the identification of local structural flexibilities in the connections between the machinery and the base plate. The relative importance of the modes during normal operation is revealed by comparison with operational deformation shapes. The use of sound intensity mapping allowed to calculate the total sound power and to rank the equipment according to its sound power contribution. High acoustic levels were found and related to the fluid drive and to the piping system. Modification of the piping section resulted in a reduction of noise and vibration levels along the test loop and smooth operation in a wide suction pressure range.

  • PDF

CNG 충전시스템 충전특성해석 프로그램 개발 (A Development of Simulation Program for CNG Refueling Station)

  • 양판석;강찬구;권용호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.331-336
    • /
    • 2001
  • Theoretical approach was taken to the whole CNG refueling process. In particular, this study was focused on the prediction of flow rate at any given piping configuration of CNG system, in order that a simulation program for the CNG refueling system should be developed. The simulation result of refueling process was compared with experimental result obtained from various kinds of fueling configuration. The simulation results showed a satisfactory agreement within 10% errors in fueling time, fueling amount, and residual pressure. The developed program would be used a good engineering tools for estimating fueling performance for a any given CNG station.

  • PDF

Development of Ceramic Humidity Sensor for the Korean Next Generation Reactor

  • Lee, Na-Young;Hwang, Il-Soon;Song, Chang-Rock;Yoo, Han-Ill;Park, Sang-Duk;Yang, Jun-Seong
    • Nuclear Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.435-443
    • /
    • 1998
  • Leak-before-break(LBB) approach has been shown to be both cost effective and risk reductive when applied to high energy Piping in nuclear Power Plants. For the Korean Next Generation Reactor (KNGR) development, LBB application is considered for the Main Steam Line(MSL) piping inside containment. Unlike the primary system leakages, the MSL leak detection systems must be based on principles other than radioactivity measurements. Among humidity, heat and acoustic noise currently being considered as indicators of leakage, we explored humidity as an effective one and developed ceramic-based humidity sensor which can be qualified for LBB applications. The ceramic material, sintered and annealed MgCr$_2$O$_4$-TiO$_2$, is shown to increase its electrical conductivity drastically upon water vapor adsorption over the entire temperature range of interest. With this ceramic sensor specimen, we suggested installation-inside-the-piping method by which we can detect leakage more rapidly and sensitively. In this paper, we describe the progress in the development and characterization of ceramic humidity sensor for the LBB application to the MSL of KNGR.

  • PDF

왕복동식 압축기의 스너버내 맥동압 분포 (Pulsatile Pressure Distribution on the Snubber of Reciprocating Compressor)

  • 이경환;;정한식;정효민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.606-611
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. This study discusses pressure pulsation phenomena occurred in a reciprocating compressor system. An experiment applied air compressor unit, as pulsating pressure generator, has been done. The compressor was connected sequentially to a snubber model and pressure tank. Sensor probes were placed on the inlet and outlet pipes of snubber. Compressor was driven by a motor controlled by a frequency regulator. The experiment was conducted by adjusting the regulator at 40Hz. General information about an internal gas flow can be achieved by numerical analysis approach. Information of the velocity, pressure and turbulence kinetic energy distribution are presented in this paper. Based on this result, the design improvement might be done.

  • PDF

CAE에 의한 압축기 배관의 설계 (Design of Compressor Loop Pipe Using CAE)

  • 박성근;조성욱;김형석;임금식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 춘계학술대회논문집; 한국과학연구소, 21 May 1993
    • /
    • pp.71-74
    • /
    • 1993
  • The purpose of this paper is that the compressor design engineers reduce a development term with CAE approach. By using CAE, geometries for various type of piping systems can be constructed interactively and the Vibration Characteristics and Stress distribution are analyzed by FEM. Sensitivity and structural modification analysis capability are also used to reduce the total number of prototypes. An example is shown to validate the effectiveness of this system.

  • PDF

선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구 (Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach)

  • 이정형
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.184-192
    • /
    • 2022
  • 밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.

개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구 (A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating)

  • 홍석진;류성룡;석호태;여명석;김광우
    • 한국주거학회논문집
    • /
    • 제17권2호
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.