• Title/Summary/Keyword: Applied Load Range

Search Result 412, Processing Time 0.03 seconds

Nano-scale Friction Properties of SAMs with Different Chain Length and End Groups

  • R.Arvind Singh;Yoon Eui-Sung;Han, Hung-Gu;Kong, Ho-Sung
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.13-16
    • /
    • 2005
  • Friction characteristics at nano-scale of self-assembled monolayers (SAMs) having different chain lengths and end groups were experimentally studied.51 order to understand the effect of the chain length and end group on the nano-scalefriction: (1) two different SAMs of shorter chain lengths with different end groups such as methyl and phenyl groups, and (2)four different kinds of SAMs having long chain lengths (C10) with end groups of fluorine and hydrogen were coated on siliconwafer (100) by dipping method and Chemical Vapour Deposition (CVD) technique. Their nano-scale friction was measuredusing an Atomic Force Microscopy (AFM) in the range of 0-40 nN normal loads. Measurements were conducted at the scanning speed of 2 $mu$m/s for the scan size of 1$mu$m x 1 $mu$m using a contact mode type $Si_3N_4$ tip (NPS 20) that had a nominal spring constant0.58 N/m. All experiments were conducted at anlbient temperature (24 $pm$1$circ$C) and relative humidity (45 $pm$ 5%). Results showedthat the friction force increased with applied normal load for all samples, and that the silicon wafer exhibited highest frictionwhen compared to SAMs. While friction was affected by the inherent adhesion in silicon wafer, it was influenced by the chainlength and end group in the SAMs. It was observed that the nano-friction decreased with the chain length in SAMs. In the caseof monolayers with shorter length, the one with the phenyl group exhibited higher friction owing to the presence of benBenerings that are stiffer in nature. In the case of SAMs with longer chain length, those with fluorine showed friction values relativelyhigher than those of hydrogen. The increase in friction due to the presence of fluorine group has been discussed with respect tothe siBe of the fluorine atom.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to the Dynamic Response Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석(II) -축대칭 쉘의 동적 응답 해석을 중심으로 -)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.74-84
    • /
    • 1996
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. For developing a program to analyze the dynamic response of an axisymmetric shell in this study, the material nonlinearity effect on the dynamic response was formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion was numerically solved by a central difference scheme. A complete finite element program has been developed and the results obtained by it are compared with those in the references 1 and 2. The results are in good agreement with each other. As a case study of its application, the developed program was applied to a dynamic response analysis of a nuclear reinforced concrete containment structure. The results obtained from the' numerical examples are summarized as follows : 1. The dynamic magnification factor of the displacement and the stress were unrelated with the concrete strength. 2. As shown by the results that the displacement dynamic magnification factor were form 1.7 to 2.3 and the stress dynamic magnification factor from 1.8 to 2.5, the dynamic magnification factor of stress were larger than that of displacement. 3. The dynamic magnification factor of stress on the exterior surface was larger than that on the interior surface of the structure.

  • PDF

Three-dimensional finite element analysis of the stress distribution and displacement in different fixation methods of bilateral sagittal split ramus osteotomy

  • Yun, Kyoung In;Cho, Young-Gyu;Lee, Jong-Min;Park, Yoon-Hee;Park, Myung-Kyun;Park, Je Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.5
    • /
    • pp.271-275
    • /
    • 2012
  • Objectives: This study evaluated a range of fixation methods to determine which is best for the postoperative stabilization of a mandibular osteotomy using three-dimensional finite element analysis of the stress distribution on the plate, screw and surrounding bone and displacement of the lower incisors. Materials and Methods: The model was generated using the synthetic skull scan data, and the surface model was changed to a solid model using software. Bilateral sagittal split ramus osteotomy was performed using the program, and 8 different types of fixation methods were evaluated. A vertical load of 10 N was applied to the occlusal surface of the first molar. Results: In the case of bicortical screws, von-Mises stress on the screws and screw hole and deflection of the lower central incisor were minimal in type 2 (inverted L pattern with 3 bicortical repositioning screws). In the case of plates, von-Mises stress was minimal in type 8 (fixation 5 mm above the inferior border of the mandible with 1 metal plate and 4 monocortical screws), and deflection of the lower central incisor was minimal in types 6 (fixation 5 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws) and 7 (fixation 12 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws). Conclusion: Types 2 and 6 fixation methods provide better stability than the others.

A Study on the Development of Large Aluminum Flange using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • 배원병;왕신일;서명규;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.905-909
    • /
    • 2001
  • The significance of casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from $420^{\circ}C$ to $450^{\circ}C$. The suitable strain rate was 1.5 $sec^{-1}$. The deformation amount of a preform in a forging process is key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of cast preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for the low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeds 0.7. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

  • PDF

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.

ZVS Flyback Converter Using a Auxiliary Circuit (보조회로를 이용한 영전압 스위칭 플라이백 컨버터)

  • 김태웅;강창수
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.11-116
    • /
    • 2000
  • A topology decreased switching loss and voltage stress by zero voltage switching is presented in this paper. Generally, Switching mode converting productes voltage stress and power losses due to excessive voltage and current. which affect to performance of power supply and reduce overall efficiency of equipments. Virtually, In flyback converter, transient peak voltage and current at switcher are generated by parasitic elements. To solve these problems, present ZVS flyback converter topology applied a auxiliary circuit. Incorporation of auxiliary circuit into a conventional flyback topology serves to reduce power losses and to minimize switching voltage stress. Snubber capacitor in auxiliary circuit serves ZVS state by control voltage variable time at turn on and off of main switch, then reduces voltage stress and power losses. The proposed converter has lossless switching in variable load condition with wide range. A detailed analysis of the circuit is presented and the operation procedure is illustrated. A (50W 100kHz prototype) ZVS flyback converter using a auxiliary circuit is built which shows an efficiency improvement as compared to a conventional hard switching flyback converter.

  • PDF

Fatigue Strength Analysis and Reliability Analysis of D/H VLCC (D/H VLCC의 피로강도해석과 피로 신뢰성해석)

  • Yang, P.D.C.;Lee, J.S.;Yoon, J.H.;Seo, Y.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.64-74
    • /
    • 1997
  • The necessity and importance of fatigue failure to variable load has been appreciated as the structural design technique develops and use of high tensile steel is increasing. This is much more appreciated for a large ship such as VLCC. The rigorous fatigue analysis and safety assessment should be, hence, carried out at the design stage to avoid the possibility of fatigue failure and to achieve the design result having a sufficient structural safety to fatigue strength. This paper deals with an efficient spectral fatigue analysis of ship structures by introducing the concept of stress influence coefficient. In the process included are probabilistic loading analysis, evaluation of long-term distribution of stress range and estimation of fatigue life applying the spectral fatigue analysis. An integrated computer program has been developed in which reliability analysis to fatigue strength is also included and has been applied to D/H VLCC.

  • PDF

Stiffness of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 강성)

  • Park, Jeongseon;Park, Duhee;Yoon, Sewoong;Jang, Hwasup;Yoon, Jinam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.5-15
    • /
    • 2017
  • To perform an integrated load analysis carried out to evaluate the stability evaluation of wind turbine generators, the six degree-of-freedom stiffness matrix of foundation, which describes relationships between loads and displacement, is needed. Since the foundation stiffness should accurately reflect the shape of foundation and the condition of soil, it is necessary to calculate the stiffness of the bucket foundation that considers the elasto-plastic behavior of the soil. In this study, finite element analyses were performed for a range of soils and shapes of bucket foundations to estimate the foundation stiffness. Normalized stiffness curves are developed from respective numerical simulations. Proposed results are considered to be useful because they can be directly applied in the design.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

Humidity-Sensitive Characteristics and Reliabilities of Polymeric Humidity Sensors Using 2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium brornide (2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide를 이용한 고분자 습도센서의 감습 특성 및 신뢰성)

  • Lee, Chil-Won;Gong, Myoung-Seon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.461-466
    • /
    • 1999
  • The humidity sensor containing ammonium salt was prepared from the copolymer of 2-methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide (MDHAB)/MMA/DAEMA = 6/3/1. The humid membrane was fabricated on the gold/alumina electrode by dipping. The impedances were $298k{\Omega},\;11k{\Omega}$, and $2.3k{\Omega}$ at 40%RH, 70%RH and 90%RH, respectively, at $5^{\circ}C$ and the humidity-sensitive characteristics were suitable for low temperature humidity sensor. The temperature-dependent coefficient between $5^{\circ}C$ and $20^{\circ}C$ was found to be $-0.80%RH/^{\circ}C$ and the hysteresis falled in the ${\pm}2%RH$ range. The response time was found to be 38 sec for the relative humidity ranging from 34%RH to 88%RH at $20^{\circ}C$. The reliabilities such as temperature cycle, humidity cycle, high temperature and humidity resistance, electrical load stability, stability of long-term storage and water durability were measured and evaluated for the application as a humidity sensor.

  • PDF