• 제목/요약/키워드: Applied Energy

검색결과 10,561건 처리시간 0.036초

국내 에너지제로하우스 비교를 통한 요소기술 특성 및 표준 모델 제시에 관한 연구 (Suggestion of the Characteristics of Element Technology and the Standard Model through the Comparison of Domestic Zero-energy Houses)

  • 이충국;이정철;김상수;서승직
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권2호
    • /
    • pp.27-35
    • /
    • 2012
  • Five zero energy house models developed in Korea for the purpose of the energy performance were compared and analyzed in the study. The standard passive house model applying common technology and efficient energy performance elements was proposed. Standard passive house 5 models have been developed commonly aiming at 100% energy saving, applying high-performance and high-efficiency exterior thermal insulation, using 3 low-e coated window system, and targeting average 0.65 ACH to enhance privacy. Energy recovery ventilators and dry and cold radiant heating floor has been partially applied. Eco-design techniques such as the awning device, heat insulating door, using natural light have been used. Solar and geothermal systems as the application of renewable energy technologies have been commonly applied. And fuel cells were applied to a partial model. The standard model based on common technical elements and average performance of each element and obtained from five model analysis has been proposed in the study.

Uranium thermochemical cycle used for hydrogen production

  • Chen, Aimei;Liu, Chunxia;Liu, Yuxia;Zhang, Lan
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.214-220
    • /
    • 2019
  • Thermochemical cycles have been predominantly used for energy transformation from heat to stored chemical free energy in the form of hydrogen. The thermochemical cycle based on uranium (UTC), proposed by Oak Ridge National Laboratory, has been considered as a better alternative compared to other thermochemical cycles mainly due to its safety and high efficiency. UTC process includes three steps, in which only the first step is unique. Hydrogen production apparatus with hectogram reactants was designed in this study. The results showed that high yield hydrogen was obtained, which was determined by drainage method. The results also indicated that the chemical conversion rate of hydrogen production was in direct proportion to the mass of $Na_2CO_3$, while the solid product was $Na_2UO_4$, instead of $Na_2U_2O_7$. Nevertheless the thermochemical cycle used for hydrogen generation can be closed, and chemical compounds used in these processes can also be recycled. So the cycle with $Na_2UO_4$ as its first reaction product has an advantage over the proposed UTC process, attributed to the fast reaction rate and high hydrogen yield in the first reaction step.

대학건축물의 전력에너지 사용량 조사 및 분석 (Survey and Analysis of Power Energy Usage of University Buildings)

  • 윤남식;김정태
    • KIEAE Journal
    • /
    • 제13권2호
    • /
    • pp.27-32
    • /
    • 2013
  • For the past seven years, the increase in the energy consumption of universities in Korea has been 3.7 times higher than the overall increase in the energy consumption across Korea (22.5%). This is an example that shows that universities have been a massive source of greenhouse gases. Such an increase has been attributed to the new and expanded construction of architectural structures on campus. Many people argue that the increasing number of buildings may cause waste of energy and loss of efficiency. Therefore, this study was conducted as a preliminary study to derive energy efficiency measures for new university buildings. The two aspects of energy-saving as required by the eco-friendly structure certification standards have been applied to analyze the use of new/renewable energy and the energy consumption of new university buildings that have applied light density and light engineering methods. Based on these results, the major sources of energy of existing buildings and new university buildings were compared to comparatively discuss how effectively they improve energy performance.

에너지 하베스팅 기술의 국내 건축물 적용 방안에 관한 기초 연구 - Interseasonal Heat Transfer System 적용 사례 중심으로 - (A Study on the Application Method in Korea of Energy Harvesting Technology - Focused on the Case Study of Interseasonal Heat Transfer System -)

  • 조병완;이윤성;윤광원;김도근
    • 한국도로학회논문집
    • /
    • 제16권4호
    • /
    • pp.51-62
    • /
    • 2014
  • PURPOSES: This research is a basic study for application method in korea of energy harvesting technology, and it is a research to find out the direction of architectural planning through analyzing cases of interseasonal heat transfer system applied buildings. METHODS : In this paper authors investigate application necessity of energy harvesting technology, we analyzed energy use status of building section through analyzing domestic energy consumption status and analyzed domestic renewable energy generation potential. Also we study the features of energy harvesting technology, interseasonal heat transfer system, and case study on interseasonal heat transfer system applied buildings. RESULTS : On the basis of case study on interseasonal heat transfer system applied buildings, we analyzed feasibility study and classified into four sections(economic, environment, design, applicability), and suggested directions of architectural planning. CONCLUSIONS: Economic renewable energy for public and commercial buildings(hospitals, offices, schools, factories) can be provided effectively using Interseasonal Heat Transfer.

Work function engineering on transparent conducting ZnO thin films

  • Heo, Gi-Seok;Hong, Sang-Jin;Park, Jong-Woon;Choi, Bum-Ho;Lee, Jong-Ho;Shin, Dong-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1706-1707
    • /
    • 2007
  • A possibility of work function engineering on ZnO thin film is studied by in-situ and ex-situ doping process. The work function of ZnO thin film decreases with increasing boron and phosphorus doping quantity. But, the work function of Al-doped ZnO (AZO) thin film increases as the boron doping quantity incresess. The range of work function change on ZnO thin films is 3.5 eV to 5.5 eV. This result shows that the work function of ZnO thin film is indeed engineerable by changing materials of dopants and their compositional distribution of surface. We also discuss the possible mechanism of work function engineering on ZnO thin films.

  • PDF

농촌 마을회관 제로에너지 건축물 구축을 위한 에너지 성능 분석 연구 - 충남 태안군 정죽4리 마을회관을 중심으로 - (A study on the analysis of energy performance for zero-energy building of rural village hall - Focused on the Jung Juk 4-le village hall -)

  • 박미란;최정만;이정훈
    • 한국농촌건축학회논문집
    • /
    • 제20권4호
    • /
    • pp.1-8
    • /
    • 2018
  • In this study, we survey the 2 buildings at the Central 1 and 8 buildings at the Central 2, which are divided by each climate region in the rural regions. Major heat loss factors are 47% loss of the outer shell including outer wall, roof, and bottom, 30% loss through window, and 23% loss through crevice wind. We analyze the energy simulation of ECO2 program to construct a zero energy building regarding village hall located in Jung Juk 4-le at Centeral 2. We simulate the primary energy requirement regarding village hall and the simulated results show the $265.3kWh/m^2{\cdot}a$ and it may estimate '2' energy efficiency grade. The energy requirement regarding village hall is the $183.2kWh/m^2{\cdot}a$ when the passive technology are applied in village hall. We research total amount of energy requirement in village hall when the passive and active technologies such as solar cell with 3kW and solar thermal with $20m^2$, geothermal power with 17.5kW. The simulated results show the improved energy efficiency certification grade with $1^{{+}{+}{+}}$ due to the reduced primary energy requirement with 73% when passive technology including 3kW of solar panel is applied and the energy independence rate is 54%, which is estimated to be 4th grade of zero energy buildings. The order of energy consumption are solar panel, solar thermal, and geothermal power under applied passive technology in the building. In order to expand the zero energy building, it is necessary to introduce the zero energy evaluation system in the rural region.

중앙냉난방시스템의 EMS 복합제어 효과 분석에 관한 시뮬레이션 연구 (A Simulation Study on Effect Analysis of EMS Combined Control of Central Cooling and Heating System )

  • 송재엽;안병천
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.33-44
    • /
    • 2022
  • In this study, we analyze the existing heating and cooling operation method for an office-type complex building with a central heating and cooling system, and examine the effects of applying various EMS that can be applied according to the load size to save energy in the building. For this purpose, simulation analysis was performed. As a control method, reset control of chilled water, hot water, cooling water and supply air temperatures, optimal start/stop of heat source, and number of heat source control were applied according to the load size, and energy consumption was analyzed accordingly. In addition, when all of these control methods were applied, the overlapping energy saving effect was finally confirmed. As a result, it was possible to confirm the energy saving effect when EMS for reset control and heat source control were applied compared to the existing control method of the heating and cooling system, and the effect for the case of using all these control methods in combination was also confirmed.

벡터 곱에 근거한 에너지함수 유도와 선로 컨덕턴스 및 커패시터를 포함한 전력시스템에의 적용 연구 (Derivation of an Energy Function Based on Vector Product and Application to the Power System with Transfer Conductances and Capacitors)

  • 문영현;오용택;이병하
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권6호
    • /
    • pp.274-283
    • /
    • 2005
  • This paper presents a new method to derive energy function based on vector product. Using this method, an energy function to consider transfer conductances and capacitors is derived. Then we recommend a voltage collapse criteria to predict the voltage collapse in power systems by using the energy margin derived by the proposed energy function. This energy function is applied to a 2-bus power system reflecting transfer conductances and capacitors. We show that the energy function derived based on vector product can be applied in order to analyze power system stability and the energy margin can be utilized as a criterion of voltage collapse by simulation for the 2-bus system.

마그네슘 합금의 크리이프 거동에 표면처리가 미치는 영향 (The Effect of Surface Treatment on Creep Behaviors of Mg Alloy)

  • 강대민;안정오;강민철
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.347-353
    • /
    • 2009
  • The apparent activation energy, the applied stress exponent, and rupture life have been measured from creep experiments over the range of $200^{\circ}C$ to $220^{\circ}C$ and the applied stress range of 64MPa to 94MPa. The materials were used AZ31 magnesium alloys treated by plasma electrolytic oxidation of $20{\mu}m$ and $40{\mu}m$ at surface to investigate the its influence on creep behavior, and creep tests were carried out under constant applied stress and temperature. The experimental results showed that the dipper the thickness of surface treatment the higher the activation energy and stress exponent. And the higher temperature and applied stress, the lower stress exponent and activation energy, respectively. Also the dipper the thickness of surface treatment the longer creep rupture time.