• Title/Summary/Keyword: Applications of Internet Of Things

Search Result 382, Processing Time 0.029 seconds

Digital Forensic for Location Information using Hierarchical Clustering and k-means Algorithm

  • Lee, Chanjin;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.30-40
    • /
    • 2016
  • Recently, the competition among global IT companies for the market occupancy of the IoT(Internet of Things) is fierce. Internet of Things are all the things and people around the world connected to the Internet, and it is becoming more and more intelligent. In addition, for the purpose of providing users with a customized services to variety of context-awareness, IoT platform and related research have been active area. In this paper, we analyze third party instant messengers of Windows 8 Style UI and propose a digital forensic methodology. And, we are well aware of the Android-based map and navigation applications. What we want to show is GPS information analysis by using the R. In addition, we propose a structured data analysis applying the hierarchical clustering model using GPS data in the digital forensics modules. The proposed model is expected to help support the IOT services and efficient criminal investigation process.

Defining the Scope of the Internet of Things with a Particular Focus on Its Role in Healthcare: A Review Paper

  • Abdulaziz Alomari;Ben Soh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.187-197
    • /
    • 2023
  • Today's world is experiencing rapid technological advancement like never before. The ever-changing technology space has overwhelmed citizens with a substantial load of information, which has made it difficult for them to keep up with the technology awareness. This review paper is written to provide information about the Internet of Things in a way that technical along with nontechnical individuals can understand the definition, historical evolution, components, and scope of IoT technology. Relevant literature published between January 2009 and February 2023 was included in this paper. The applications of the Internet of Things in healthcare have been a special focus of this paper as IoT has massive potential in this field and healthcare professionals often face significant issues in keeping their technology knowledge up to date. Moreover, some of the most common issues associated with IoT introduction in healthcare are also discussed in the paper along with some suitable recommendations. Although, IoT can significantly transform our lives and can introduce convenience and efficiency, particularly in the healthcare sector. However, its adoption in healthcare is still a major task due to various challenges presented by the health workforce. Thus, in-depth empirical research is suggested to assist the IoT technology transition.

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Design and Its Applications of a Hypercube Grid Quorum for Distributed Pub/Sub Architectures in IoTs (사물인터넷에서 분산 발행/구독 구조를 위한 하이퍼큐브 격자 쿼럼의 설계 및 응용)

  • Bae, Ihnhan
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1075-1084
    • /
    • 2022
  • Internet of Things(IoT) has become a key available technology for efficiently implementing device to device(D2D) services in various domains such as smart home, healthcare, smart city, agriculture, energy, logistics, and transportation. A lightweight publish/subscribe(Pub/Sub) messaging protocol not only establishes data dissemination pattern but also supports connectivity between IoT devices and their applications. Also, a Pub/Sub broker is deployed to facilitate data exchange among IoT devices. A scalable edge-based publish/subscribe (Pub/Sub) broker overlay networks support latency-sensitive IoT applications. In this paper, we design a hypercube grid quorum(HGQ) for distributed Pub/Sub systems based IoT applications. In designing HGQ, the network of hypercube structures suitable for the publish/subscribe model is built in the edge layer, and the proposed HGQ is designed by embedding a mesh overlay network in the hypercube. As their applications, we propose an HGQ-based mechansim for dissemination of the data of sensors or the message/event of IoT devices in IoT environments. The performance of HGQ is evaluated by analytical models. As the results, the latency and load balancing of applications based on the distributed Pub/Sub system using HGQ are improved.

Performance Evaluation of Node.js for Web Service Gateway in IoT Remote Monitoring Applications

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • The growth of mobile devices in Internet of Things (IoT) leads to a number of remote and controlling system related IoT applications. For instance, home automation controlling system uses client system such web apps on smartphone or web service to access the home server by sending control commands. The home server receives the command, then controls for instance the light system. The web service gateway responsible for handling clients' requests attests an internet latency when an increasing number of end users requests submit toward it. Therefore, this web service gateway fails to detect several commands, slows down predefined actions which should be performed without human intervention. In this paper, we investigate the performance of a web server-side platgorm based event-driven, non-blocking approach called Node.js against traditional thread-based server side approach to handle a large number of client requests simultaneously for remote and controlling system in IoT remote monitoring applications. The Node.JS is 40% faster than the traditional web server side features thread-based approach. The use of Node.js server-side handles a large number of clients' requests, then therefore, reduces delay in performing predefined actions automatically in IoT environment.

Service Management for Cloud Marketplace : A Case of Internet2 NET+ (클라우드 마켓플레이스를 위한 서비스 관리체계 연구 : Internet2 NET+ 사례)

  • Kwon, Suhn Beom;Ahn, Sung Mahn
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.221-236
    • /
    • 2015
  • Application software is delivered to customers as a form of service at cloud environment. A cloud service provider is a marketplace between supply side (application providers) and demand side (customers). Cloud service providers have to validate applications to be included in their service portfolio. Not only performance, security, networking, compliances should be checked but also business contract, authentication should be provided. Organization customers are more sensitive to these validation criteria and process. We study the Internet2 NET+, which is a successful cloud marketplace of applications for research and education organizations. This case study shows us three things : (i) a cloud marketplace's application management process : selection, validation, transition to service, customization of applications (ii) what a cloud marketplace has for its infrastructure like authentication, security, access control etc. (iii) what a cloud marketplace has as its governance structure. This case study will provide informative analysis of Internet2 NET, a profit-making vertical and buyer's marketplace (education industry). And we will get some strategic implications for planning and implementing cloud marketplaces.

An Efficient Markov Chain Based Channel Model for 6G Enabled Massive Internet of Things

  • Yang, Wei;Jing, Xiaojun;Huang, Hai;Zhu, Chunsheng;Jiang, Qiaojie;Xie, Dongliang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4203-4223
    • /
    • 2021
  • Accelerated by the Internet of Things (IoT), the need for further technical innovations and developments within wireless communications beyond the fifth generation (B5G) networks is up-and-coming in the past few years. High altitude platform station (HAPS) communication is expected to achieve such high levels that, with high data transfer rates and low latency, millions of devices and applications can work seamlessly. The HAPS has emerged as an indispensable component of next-generations of wireless networks, which will therefore play an important role in promoting massive IoT interconnectivity with 6G. The performance of communication and key technology mainly depend on the characteristic of channel, thus we propose an efficient Markov chain based channel model, then analyze the HAPS communication system's uplink capability and swing effect through experiments. According to the simulation results, the efficacy of the proposed scheme is proven to meet the requirements of ubiquitous connectivity in future IoT enabled by 6G.

LCB: Light Cipher Block An Ultrafast Lightweight Block Cipher For Resource Constrained IOT Security Applications

  • Roy, Siddhartha;Roy, Saptarshi;Biswas, Arpita;Baishnab, Krishna Lal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4122-4144
    • /
    • 2021
  • In this fast-paced technological world, the Internet of Things is a ground breaking technology which finds an immense role in the present electronic world which includes different embedded sensors, devices and most other things which are connected to the Internet. The IoT devices are designed in a way that it helps to collect various forms of data from varied sources and transmit them in digitalized form. In modern era of IoT technology data security is a trending issue which greatly affects the confidentiality of important information. Keeping the issue in mind a novel light encryption strategy known as LCB is designed for IoT devices for optimal security. LCB exploits the benefits of Feistel structure and the architectural benefits of substitution permutation network both to give more security. Moreover, this newly designed technique is tested on (Virtex-7) XC7VX330T FPGA board and it takes much little area of 224 GE (Gate Equivalent) and is extremely fast with very less combinational path delay of 0.877 ns. An in-depth screening confirms the proposed work to promise more security to counter cryptographic attacks. Lastly the Avalanche Effect (AE) of LCB showed as 63.125% and 63.875% when key and plaintext (PT) are taken into consideration respectively.

Blockchain and IoT Integrated Banana Plant System

  • Geethanjali B;Muralidhara B.L.
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.155-157
    • /
    • 2024
  • Internet of Things (IoT) integrated with the Blockchain is the state of the art for keen cultivation and agriculture. Recently the interest in agribusiness information is enlarging owing to the fact of commercializing the smart farming technology. Agribusiness information are known to be untidy, and experts are worried about the legitimacy of information. The blockchain can be a potential answer for the expert's concern on the uncertainty of the agriculture data. This paper proposes an Agri-Banana plant system using Blockchain integrated with IoT. The system is designed by employing IoT sensors incorporated with Hyperledger fabric network, aims to provide farmers with secure storage for preserving the large amounts of IoT and agriculture data that cannot be tampered with. A banana smart contract is implemented between farmer peer and buyer peer of two different organizations under the Hyperledger fabric network setup aids in secure transaction of transferring banana from farmer to buyer.

A Double-blockchain Architecture for Secure Storage and Transaction on the Internet of Things Networks (IoT 네트워크에서 스토리지와 트랜잭션 보호를 위한 이중 블록체인 구조)

  • Park, jongsoon;Park, chankil
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • IoT applications are quickly spread in many fields. Blockchain methods(BC), defined as a distributed sharing mechanism, offer excellent support for IoT evolution. The BC provides a secure way for communication between IoT devices. However, the IoT environments are threatened by hacker attacks and malicious intrusions. The IoT applications security are faced with three challenges: intrusions and attacks detection, secure communication, and compressed storage information. This paper proposed a system based on double-blockchain to improve the communication transactions' safety and enhance the information compression method for the stored data. Information security is enhanced by using an Ellipse Curve Cryptography(ECC) considered in a double-blockchain case. The data compression is ensured by the Compressed Sensing(CS) method. The conducted experimentation reveals that the proposed method is more accurate in security and storage performance than previous related works.