• Title/Summary/Keyword: Apomorphine

Search Result 46, Processing Time 0.029 seconds

Alterations of Binding Capacities of Dopamine Receptors After Treatment with Haloperidol and Sulpiride in Rat Brain (Haloperidol 및 Sulpiride 투여후 백서 뇌내 Dopamine 수용체 결합력의 변화)

  • Hahn, Kyu-Hee;Ahn, Yun-Young
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.1
    • /
    • pp.63-69
    • /
    • 1995
  • The effects of chronic treatment with haloperidol and sulpiride on the binding capacities of dopamine(DA) receptor were examined in rat striatum and olfactory tubercle. Additionally, the stereotypy scores were assessed after apomorphine administration. Rats were treated with haloperidol(0.5mg/kg/day) or sulpiride(40mg/kg/day) for four weeks. Apomorphine(0.5mg/kg) was injected after three-day washout from neuroleptics, and stereotypy scores were assessed. Haloperidol group showed high scores of stereotyped behavior in comparison with control and sulpiride groups. With control group, sulpiride group displayed similar stereotyped behaviors. Saturation analysis of the binding of [$^3H$]spiperone to striatal membranes showed that the Bmax of haloperidol and sulpiride groups increased significantly in comparison with that of control group. The $K_D$ decreased significantly after sulpiride treatment in striatum. Although sulpiride produces the same proliferation of DA receptor, the low stereotypy scores of sulpiride group indirectly suggest that sulpiride acts differently from haloperidol in brain DA system. The Bmax increased remarkably following both treatment with haloperidol and sulpiride in olfactory tubercle. Also, the increase in $K_D$ was significant after treatment with haloperidol and sulpiride in olfactory tubercle. Moreover, the $K_D$ of control group in olfactory tubercle was more than twice the $K_D$ of control group in striatum. The $K_D$ was 86.2 in striatum and 37.5 pM in olfactory tubercle. The present finding indicates that sulpiride also induces the proliferation of DA receptor in olfactory tubercle and may interact with some DA receptor subtype with high affinity profile. The different affinities of the control groups of striatum and olfactory tubercle suggest that striatal DA receptor subtypes labeled by [$^3H$]spiperone could differ from those of olfactory tubercle.

  • PDF

Genetically Modified Human Embryonic Stem Cells Relieve Symptomatic Motor Behavior in a Rat Model of Parkinson′s Disease

  • 길광수;이영재;김은영;이창현;이훈택;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.74-74
    • /
    • 2003
  • Embryonic stem cells have several characteristics suitable for cell replacement therapy. To investigate a possibility of using human embryonic stem cell (hESC) as a carrier of therapeutic gene(s), hESC (MB03) was co-transfected with cDNAS coding for tyrosine hydroxylase (TH) and GTP cyclohydrolase Ⅰ (GTPCH Ⅰ) and bulk-selected using neomycin and hygromycin-B. Successful transfection was confirmed by western immunoblotting and RT-PCR. The genetically modified hESC (bk-THGC) relieved apomorphine-induced asymmetric motor behavior by approximately 54% when grafted into striatum of 6-OHDA-denervated rat brain. The number of rotation, however, increased up to 176+18% in 6 weeks when sham-grafted compared with number of rotation before graft. Immunohistochemical staining revealed that the grafted hESC survived and expressed TH for at least 6 weeks while the experiment was continued.

  • PDF

Neurochemical Studies of Standardized Ginseng Extract G115 on the Central Dopaminergic Activity (II) (표준화된 인삼추출물 G115의 중추도파민신경계에 대한 신경화학적 연구(II))

  • 이순철;유관희;김용호
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.183-189
    • /
    • 1992
  • Effect of the standardized ginseng extract(G115) on the central monoaminergic systems were investigated in comparison with that of halcperidol in rats. Immediately after sacrificed by decapitation, the strlata and frontal cortex were removerl. Concentations of the monoamines dopamine and serctorLin and their metabolites were deterinintd by HPLC-EC. G115 increased the concentration of 5-HIAA and DOPAC/UA ratio in striatum. However, dopaminrrgic neuronal activities were not affected by G115 that decreased the concentratio,Is of 5-HT and 5-HIAA in frontal cortex. G115 in combination with apomorphine significantly irlcreased the concentration of DA and S-HT but decreased the DO PAC/DA ratio and 5-HIAA/5-HT ratio only in frontal cortex. These results suggest that G115 like HPD inhibits the activity of nigrostriatal dopamine neuron in striatum. However, unlike HPD it activates central monoaminergic neuron activity in frontal cortex.

  • PDF

Limonene Inhibits Methamphetamine-Induced Sensitizations via the Regulation of Dopamine Receptor Supersensitivity

  • Gu, Sun Mi;Kim, Sung Yeon;Lamichhane, Santosh;Hong, Jin Tae;Yun, Jaesuk
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • Limonene is a cyclic terpene found in citrus essential oils and inhibits methamphetamine- induced locomotor activity. Drug dependence is a severe neuropsychiatric condition that depends in part on changes in neurotransmission and neuroadaptation, induced by exposure to recreational drugs such as morphine and methamphetamine. In this study, we investigated the effects of limonene on the psychological dependence induced by drug abuse. The development of sensitization, dopamine receptor supersensitivity, and conditioned place preferences in rats was measured following administration of limonene (10 or 20 mg/kg) and methamphetamine (1 mg/kg) for 4 days. Limonene inhibits methamphetamine- induced sensitization to locomotor activity. Expression of dopamine receptor supersensitivity induced by apomorphine, a dopamine receptor agonist, was significantly reduced in limonenepretreated rats. However, there was no significant difference in methamphetamine-induced conditioned place preferences between the limonene and control groups. These results suggest that limonene may ameliorate drug addiction-related behaviors by regulating postsynaptic dopamine receptor supersensitivity.

Influence of Yohimbine on the Central Dopaminergic Regulation of Renal Function (신장기능의 중추 Dopamine성 조절에 미치는 Yohimbine의 영향)

  • Kook, Young-Johng;Kim, Kyung-Keun;Cho, Kang-Seon;Min, Byung-Kap
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.79-87
    • /
    • 1986
  • Recently it has been shown that central dopaminergic system regulates the renal function and that intracerebroventricularly (icv) administered dopamine (DA) produces antidiuresis and antinaturiuresis, resembling icv norepinephrine, and evidence has been accumulated which would suggest the involvement of adrenergic system in the DA effects. It was attempted therefore in this study to see whether the DA effect is influenced by pretreatment of yohimbine which is known as a specific ${\alpha}_2-adrenoceptor$ antagonist. Yohimbine produced, when given icv in doses of $100\;{\mu}g/kg$, marked antidiuresis and antinatriuresis along with decreases in renal perfusion and glomerular filtration. DA, in doses of $15\;{\mu}g/kg$, also produced antidiuresis and antinaturiuresis. However, after yohimbine-pretreatment DA $15\;{\mu}g/kg$ improved renal hemodynamics, and electrolyte excretion and urine flow rate transiently increased. With $150\;{\mu}g/kg$ DA, the antidiuresis was more marked in the control group. But the yohimbine-pretreated animals responded with marked diuresis and natriuresis, sodium excretion increasing more than three-fold, which lasted for 20 minutes. $K^+-excretion$, osmolar clearance as well as free-water reabsorption increased. Renal hemodynamics improved partly. Apomorphine, a DA agonist, when given icv in doses of $150\;{\mu}g/kg$, produced diuresis and naturiuresis, concomitant with increased renal hemodynamics. Yohimbine-pretreatment however did not abolish the apomorphine-induced diuresis and naturiuresis. Antidiuresis and antinatriuresis elicited by norepinephrine, $10\;{\mu}g/kg$, was not affected by yohimbine-pretreatment. These results indicate that the renal effects of icv DA is not so simple as those of norepinephrine, and the diuretic natriuretic cffect which had been masked by the hemodynamic effect becomes manifest only when the decreases in hemodynamics were removed by the pretreatment of yohimbine. It was further suggested that those DA receptors which mediate the natriuretic response to icv DA is not affected by yohimbine, whereas those receptors involved in the decrease in renal hemodvnamics are blocked by yohimbine. And the possibility of involvement of adrcnergic system in the DA action is not substantiated.

  • PDF

Influence of Intracerebroventricular Domperidone on Rabbit Renal Function (가토 신장기능에 미치는 뇌실내 Domperidone의 영향)

  • Kim, Young-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.135-145
    • /
    • 1988
  • Dopamine when given icv induces antidiuresis along with transient natriuretic tendency, and it has been suggested that both subtypes of central dopamine receptors may influence renal function differentially. This study was undertaken to delineate the role of central $D_2$ receptors employing domperidone (DOM), a selective $D_2$ antagonist. DOM icv elicited antidiuresis and antinatriuresis in doses ranging from 15 to $135{\mu}g/kg$. GFR and RPF as well as sodium excretion decreased. Systemic blood pressure increased slightly. Intravenous DOM did not elicit significant changes in sodium excretion. Denervation of the kidney abolished the hemodynamic change induced by icv DOM, but sodium excretion decreased on both innervated and denervated kidneys. No diuretic tendency was uncovered by the denervation. Dopamine, $150{\mu}g/kg$ icv, produced antidiuresis along with decreases in hemodynamics. These effects were not affected by DOM-pretreatment, and no natriuretic tendency was unveiled. Bromocriptine, a $D_2$ receptor agonist, $200{\mu}g/kg$ icv, elicited marked diuresis and natriuresis, which were completely abolished by DOM-pretreatment. Apomorphine, another prototype of $D_2$ agonist, $150{\mu}g/kg$ icv, produced diuresis and natrituresis with increases in renal hemdoynamics, followed by decreases in all parameters. DOM-pretreatment did not affect the renal hemodynamic effects, wherease the increases in urine flow and sodium excretion were markedly reduced by DOM, Present study suggests that central $200{\mu}g/kg$ receptors mediate natriuretic and diuretic influence to the kidney, possibly through mediation of natriuretic humoral factor, and provide further evidence supporting the hypothesis that central $200{\mu}g/kg$ receptors mediate antidiuretic influence via nerve pathway, whereas natriuresis are brought about through mediation of central $200{\mu}g/kg$ receptors.

  • PDF

Effect of Acupuncture on 6-Hydroxydopamine-induced Nigrostriatal Dopaminergic Neuronal Cell Death in Rats

  • Kim, Yeung-Kee;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.98-107
    • /
    • 2005
  • Objectives: Acupuncture treatment has been clinically used for functional recovery in Parkinson's disease. In the present study, we investigated the effect of acupuncture at Zusanli (ST36) on nigrostriatal dopaminergic neuronal cell death in rats. Methods: A Parkinson's disease model was induced by the unilateral injection of 6-hydroxydopamine (6-OHDA) into the striatum. Acupuncture treatment was performed at Zusanli (ST36) and at the hip, as a non-acupoint, once a day for 14 days. Two weeks after 6-0HDA injection, an apomorphine-induced rotational behavior test showed significant rotational asymmetry in rats with Parkinson's disease. Immunostaining for tyrosine hydroxylase demonstrated a dopaminergic neuronal loss in the substantia nigra and dopaminergic fiber loss in the striatum. Results: Acupuncture at the ST36 acupoint significantly inhibited rotational asymmetry in rats with Parkinson's disease, and also protected against 6-OHDA-induced nigrostriatal dopaminergic neuronal loss. These effects of acupuncture were not observed for non-acupoint acupuncture. Conclusions: The present study shows that acupuncture treatment, especially at the ST36 acupoint, can be used as a useful strategy for the treatment of Parkinson's disease.

  • PDF

Effects of Panax Ginseng on the Development of Morphine Induced Tolerance and Dependence (II) -Effects of Ginseng Butanol Fraction on the Development of Morphine Induced Tolerance and Dopamine Receptor Supersensitivity in Rats- (Morphine의 내성(耐性) 및 의존성(依存性) 형성(形成)에 미치는 인삼(人蔘)의 효과(II) -인삼(人蔘)의 Butanol 분획이 흰쥐의 Morphine 내성(耐性) 및 Dopamine 수용체(受容體) 초과민성(超過敏性) 형성에 미치는 영향(影響)-)

  • Kim, Hack-Seang;Oh, Sei-Kwan;Kim, Gap-Cheol
    • Korean Journal of Pharmacognosy
    • /
    • v.16 no.1
    • /
    • pp.31-35
    • /
    • 1985
  • Intraperitoneal administration of ginseng butanol fraction(GBF) to chronic morphinization in male Sprague-Dawley rats inhibited the development of tolerance to the analgesic effect and hyperthermic action of morphine. Rats were rendered tolerant to morphine by subcutaneous multiple morphine injections for a period of 8 days. The development of tolerance was evidenced by the decreased analgesic response to morphine and inhibition of tolerance by the greater analgesic response. Concomitant administration of morphine with GBF blocked the tolerance to the hyperthermic effect of morphine as evidenced by elevation of body temperature by morphine. Dopamine receptor sensitivity was enhanced in morphine tolerant rats as measured by apomorphine induced in spontaneous motor activity. GBF administration also blocked dopamine receptor supersensitivity induced by chronic morphinization.

  • PDF

Inhibitory Effects of Glycine on Morphine-Induced Hyperactivity, Reverse Tolerance and Postsynaptic Dopamine Receptor Supersensitivity in Mice

  • Shin, Kyung-Wook;Hong, Jin-Tae;Yoo, Hwan-Soo;Song, Sukgil;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.26 no.12
    • /
    • pp.1074-1078
    • /
    • 2003
  • The effects of glycine on morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice was examined. A single administration of morphine (10 mg/kg, s.c.) induced hyperactivity as measured in mice. The morphine-induced hyperactivity was inhibited by pretreatment with glycine (100, 200 and 400 mg/kg, i.p.). In addition, it was found repeated administration of morphine (10 mg/kg, s.c.) to mice daily for 6 days caused an increase in motor activity which could be induced by a subsequent morphine dose, an effect known as reverse tolerance or sensitization. Glycine (100, 200 and 400 rng/kg, i.p.) also inhibited morphine-induced reverse tolerance. Mice that had received 7 daily repeated administrations of morphine also developed postsynaptic dopamine receptor supersensitivity, as shown by enhanced ambulatory activity after administration of apomorphine (2 mg/kg, s.c.). Glycine inhibited the development of postsynaptic dopamine receptor supersensitivity induced by repeated administration of morphine. It is suggested that the inhibitory effects of glycine might be mediated by dopaminergic (DAergic) transmission. Accordingly, the inhibition by glycine of the morphine-induced hyperactivity, reverse tolerance and dopamine receptor supersensitivity suggests that glycine might be useful for the treatment of morphine addiction.

Inhibitory Effects of Paeonol on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon;Bae, Ki-Hwan;Yun, Yeo-Pyo;Hong, Jin-Tae;Kwon, Han-Na;Oh, Ki-Wan
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.904-910
    • /
    • 2006
  • The inhibitory effects of paeonol, a major compound of Paeoniae radix, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated through behavioral experiments. A single administration of morphine produces hyperlocomotion. Repeated administration of morphine develops sensitization (reverse tolerance), a progressive enhancement of locomotion, which is used as a model for studying the drug-induced drug-seeking behaviors, and CPP, which is used as a model for studying drug reinforcement. Paeonol inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, paeonol inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of paeonol. These results provide evidence that paeonol exerts anti-dopaminergic activity, and it is suggested that paeonol may be useful for the prevention and therapy of these adverse actions of morphine.