• Title/Summary/Keyword: Apis dorsata

Search Result 3, Processing Time 0.014 seconds

Morphometric and Genetic Variation of Tropilaelaps Mites Infesting Apis dorsata and A. mellifera in Thailand

  • Suppasat, Tipwan;Wongsiri, Siriwat
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.227-237
    • /
    • 2018
  • The majority parasitic bee mites of Thailand in genus Tropilaelaps are infesting colonies of native bees (Apis dorsata) and introduced bees (A. mellifera). The investigation aims to study morphological and genetic variation of Tropilaelaps mites infected different hosts. Adult mites were collected from honey bee brood throughout Thailand. Traditional and geometrical morphometrics were measured on photograph by using TPS program. Additional, COI gene variations were examined by PCR-RFLP and nucleotides sequencing. Tree of mites relationships were constructed by NJ and MP assumptions. Morphometric results indicated T. mercedesae were major species infesting on A. dorsata and A. mellifera. Mophological variation represented at anal and epigynial plate, which the shape of the anal plate apex margin has been key character to identify between T. mercedesae (bell to blunt shape) and T. koenigerum (pear shape). However, the discriminant analysis suggested that geometric results were potential to classify Thai Tropilaelaps populations from different hosts better than traditional morphometric. Otherwise, PCR-RFLP clearly detected the site of Dra I and Xba I digestion of Thai Tropilaelaps morphotypes. The COI sequences of T. koenigerum were founded infesting only A. dorsata in Thailand and four sequences that related to the Thai T. mercedesae morphotypes. The NJ and MP tree were clearly classified Thai Tropilaelaps species which were suggested both from morphological and molecular analysis. This information might be basically of taxonomic status, but this should have implication for controlling these mites in Thailand and other countries.

Apis cerana Beekeeping and Sacbrood Disease Management in Vietnam: Review

  • Thai, Pham Hong;Huyen, Nguyen Thi;Toan, Tran Van;Jung, Chuleui
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.269-275
    • /
    • 2018
  • Beekeeping status of Apis cerana with emphasis of experiences overcoming sacbrood virus disease are presented. Social bee fauna are rich in Vietnam with 6 honeybee species (Apis laboriosa, Apis dorsata, Apis mellifera, Apis cerana, Apis andrenifomis, Apis florea); 8 stingless bee species (Trigona laeviceps, Trigona ventralis, Trigona pagdeni, Trigona gressitti, Trigona fuscobalteata, Trigona capenteri, Trigona scintillans Trigona iridipenis) and 2 bumble bee species (Bumbus haemorrhoidalis, B. breviceps). All of them are native except A. mellifera which was introduced in1887. These bees are slated for conservation by the Ministry of Agriculture & Rural Development. Honey and other bee products are mainly harvested from 3 species including A. cerana, A. mellifera and A. dorsata. The manageable species (A. cerana and A. mellifera) are increasing in number, reaching about 1,500,000 beehives. Vietnam is the second largest honey exporter in Asia, with a total of about 48,000 tons of honey exported to the international market in 2014. A. cerana plays an important role in poverty alleviation in mountainous and remote areas of Vietnam. Honeybee suffers from various diseases of Sacbrood virus disease (SBV), European foulbrood (EFB), Nosema, and parasitic mites of Tropilaelaps mercedes and Varroa destructor. Most of these diseases can be resolved with biocontrol methods. For the parasitic mites, Vietnamese beekeepers usually apply formic acid.

Calibration of Apis Mellifera Hives for Pollination of Brassica Crop at Rawalpindi

  • ABBASI, Khalida Hamid;RAZZAQ, Asif;JAMAL, Muhammad;KHANUM, Saeeda;JAWAD, Khawer;ULLAH, Muhammad Arshad
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.2
    • /
    • pp.17-21
    • /
    • 2020
  • The response of honeybee (Apis mellifera L.) pollination on canola yield with reference to most suitable number of bee hive need per unit area of crops in order to meet optimum pollination needs and better economic yields by comparing number of hives and yield components an experiment was conducted at Beekeeping and Hill Fruit Pests Research, Station Rawalpindi during 2017-18 in complete randomized block design with two sets of four treatments for comparison: 1 hive acre-1, 2 hives acre-1, 3 hives acre-1 and 0 hive acre-1. The hives were kept inside the experimental area. Parameters were assessed: pollination density, pollinator's diversity, agronomic and economic yield. In case of pollination density, the cumulative mean abundance bee species revealed that at 1200 hours, Apis mellifera was the most abundant and frequent visitor with a mean population of 8.69 bees/plant followed by A. dorsata (0.72), Syrphid fly (0.2) and other pollinators. Minimum bee population was observed during 1400 hours, mainly due to the closure of flowers and partially due to high temperature (>35℃). Pollinator diversity revealed that A. mellifera was the most dominant pollinator of Brassica crop with highest abundance (71%). A. dosata ranked 2nd (16%) followed by A. florea (6%) respectively.