• Title/Summary/Keyword: Apical cell

Search Result 198, Processing Time 0.035 seconds

P2 Receptor-mediated Inhibition of Vasopressin-stimulated Fluid Transport and cAMP Responses in AQP2-transfected MDCK Cells

  • Kim, Yang-Hoo;Choi, Young-Jin;Bae, Hae-Rahn;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • We cultured canine kidney(MDCK) cells stably expressing aquaporin-2(AQP2) on collagen-coated permeable membrane filters and examined the effect of extracellular ATP on arginine vasopressin(AVP)-stimulated fluid transport and cAMP production. Exposure of cell monolayers to basolateral AVP resulted in stimulation of apical to basolateral net fluid transport driven by osmotic gradient which was formed by addition of 500 mM mannitol to basolateral bathing solution. Pre-exposure of the basolateral surface of cell monolayers to ATP(100 ${\mu}M$) for 30 min significantly inhibited the AVP-stimulated net fluid transport. In these cells, AVP-stimulated cAMP production was suppressed as well. Profile of the effects of different nucleotides suggested that the $P2Y_2$ receptor is involved in the action of ATP. ATP inhibited the effect of isoproterenol as well, but not that of forskolin to stimulate cAMP production. The inhibitory effect of ATP on AVP-stimulated fluid movement was attenuated by a protein kinase C inhibitor, calphostin C or pertussis toxin. These results suggest that prolonged activation of the P2 receptors inhibits AVP-stimulated fluid transport and cAMP responses in AQP2 transfected MDCK cells. Depressed responsiveness of the adenylyl cyclase by PKC-mediated modification of the pertussis-toxin sensitive $G_i$ protein seems to be the underlyihng mechanism.

Self-Incompatibility and Embryo Development in Astragali Radix (황기 자가불화합성과 배 발달)

  • Kim, Young-Guk;Yu, Hong-Seob;Seong, Nak-Sul;Park, Ho-Ki;Son, Seok-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.5
    • /
    • pp.287-293
    • /
    • 2008
  • This study was conducted to determine the characteristics of fertilization process and embryo development of Astragalus membranaceus Bunge (Astragali Radix) to provide basic data needed in its breeding. A. membranaceus showed poor seed setting when self-pollination was induced. When artificial pollination was induced, it showed less than 5% bearing in late August, but more than 13% bearing from the beginning of September 4th. The flower size was about $17.0\;mm{\times}4.0\;mm$ and pistils and stamens had the same length of 15.0mm at flowering stage. When self-pollination or cross-pollination was induced, pollen tubes extended to an ovule. While pollen tube was extending to the ovule, reproductive cell split and formed two male generative nuclei and a vegetative nucleus. In the case of self-pollination, fertilized embryo was not observed, but was formed in the case of cross-pollination. A. membranaceus is noted to have zygote self-incompatibility. In the case of cross-pollination, fertilization was observed in 6 to 8 h after pollination, where apical cell derivatives split after fertilization. A spherical pro-embryo was then formed three days after fertilization. The seed attained full shape with a seed coat showing its distinctive contour 15 days after fertilization. Thus, A. membranaceus in Leguminosae family is found to have zygote selfincompatibility although its flower shape is shown to match the self-compatibility plant.

Comparative Analysis of the Conserved Functions of Arabidopsis DRL1 and Yeast KTI12

  • Jun, Sang Eun;Cho, Kiu-Hyung;Hwang, Ji-Young;Abdel-Fattah, Wael;Hammermeister, Alexander;Schaffrath, Raffael;Bowman, John L.;Kim, Gyung-Tae
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.243-250
    • /
    • 2015
  • Patterning of the polar axis during the early leaf developmental stage is established by cell-to-cell communication between the shoot apical meristem (SAM) and the leaf primordia. In a previous study, we showed that the DRL1 gene, which encodes a homolog of the Elongator-associated protein KTI12 of yeast, acts as a positive regulator of adaxial leaf patterning and shoot meristem activity. To determine the evolutionally conserved functions of DRL1, we performed a comparison of the deduced amino acid sequence of DRL1 and its yeast homolog, KTI12, and found that while overall homology was low, well-conserved domains were presented. DRL1 contained two conserved plant-specific domains. Expression of the DRL1 gene in a yeast KTI12-deficient yeast mutant suppressed the growth retardation phenotype, but did not rescue the caffeine sensitivity, indicating that the role of Arabidopsis Elongator-associated protein is partially conserved with yeast KTI12, but may have changed between yeast and plants in response to caffeine during the course of evolution. In addition, elevated expression of DRL1 gene triggered zymocin sensitivity, while overexpression of KTI12 maintained zymocin resistance, indicating that the function of Arabidopsis DRL1 may not overlap with yeast KTI12 with regards to toxin sensitivity. In this study, expression analysis showed that class-I KNOX genes were downregulated in the shoot apex, and that YAB and KAN were upregulated in leaves of the Arabidopsis drl1- 101 mutant. Our results provide insight into the communication network between the SAM and leaf primordia required for the establishment of leaf polarity by mediating histone acetylation or through other mechanisms.

Study on the pathogenesis of the piglets experimentally infected with Korean isolate of Aujeszky′s disease virus I. Histopathologic and electron microscopic observation (Aujeszky's disease virus 국내분리주 접종자돈의 병리발생에 관한 연구 I. 병리학적 및 전자현미경적 관찰)

  • 조우영;조성환;김재훈;박최규;황의경;조부제;정운선
    • Korean Journal of Veterinary Service
    • /
    • v.19 no.1
    • /
    • pp.1-29
    • /
    • 1996
  • This study was conducted to elucidate the pathogenesis of Aujeszky's disease virus(ADV) by histopathologic examination. The first Korean ADV Isolate, which was isolated from piglets with clinical signs of Aujeszky's disease in Yangsan(YS) county, Kyungnam province, was inoculated into 32 days old piglets with a dose of $10^{5.9}$$TCID_{50}/ml$ through intranasal or intramuscular route. These piglets were sacrificed at intervals of every 24hrs for 8 days. The virulence of YS strain was determined by the observation of clinical signs, gross findings, and histopathologic changes in tissues. The virus recovery test was performed from brain, spleen, lung and tonsil in cell culture. The pathogenesis of YS strain was determined by the observation of histopathologlc lesions in CNS and neuronal tracts. The major clinical signs were fever, anorexia, dyspnea, constipation, tremor, ataxia, circling movement, hindleg paralysis and salivation. The clinical signs were more severe in piglets of the group inoculated intranasally than those of the intramuscularly inoculated gorup. Lymphocytopenia was detected on day 5 to day 6 postinoculation (PI). The ADV was recovered from the tissue homogenates of tonsil, lung, spleen and cerebrum in cell culture. The highest virus titer was detected from tonsil between day 6 and day 7 PI. Reddish sublobar consolidation foci were scattered in the apical and cardiac lobes of lung. Although yellowish necrotic foci were detected in tonsil and liver, hemorrhagic lesions were mainly observed in heart, kidney and lymph nodes. Histopathologically, degeneration and necrosis of nerve cells, nonsuppurative meningoe-ncephalitis, nodular gliosis and perivascular cuffings were observed in CNS. Multifocal fibronecrotic foci were observed in lung, liver, lymph nodes and spleen. The major pathologic changes were detected in the midbrain, pons and medulla oblongata. Eosinophilic intranuclear inclusion bodies were mainly observed in epithelia and /or macrophages of tonsil, liver, lung, spleen and submandibular lymph nodes, and neurons of brain, respectively. Observation of viral particles at various stages of replication were possible from the endothelial cells of the alveolar capillaries and tonsillar crypt epithelia by transmission electron microscope.

  • PDF

CND41, a DNA-binding protein in chloroplast nucleoid, and its function

  • Sato, Fumihiko;Murakami, Shinya;Chatani, Hiroshi;Nakano, Takeshi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.51-56
    • /
    • 1999
  • Plastids, which are organelles unique to plant cells, bear their own genome that is organized into DNA-protein complexes (nucleoids). Regulation of gene expression in the plastid has been extensively investigated because this organelle plays an important role in photosynthesis. Few attempts, however, have been made to characterize the regulation of plastid gene expression at the chromosomal structure, using plastid nucleoids. In this report, we summarize the recent progress in the characterization of DNA-binding proteins in plastids, with special emphasis on CND41, a DNA binding protein, which we recently identified in the choloroplast nucleoids from photomixotrophically cultured tobacco cells. CND41 is a protein of 502 amino acids which consisted of a transit peptide of 120 amino acids and a mature protein of 382 amino acids. The N-terminal of the 'mature' protein has lysine-rich region which is essential for DNA-binding. CNA41 also showed significant identities to some aspartyl proteases. Protease activity of purified CND41 has been recently confirmed and characterized. On the other hand, characterization of accumulation of CND41 both in wild type and transgenic tobacco with reduced amount of CND41 suggests that CND41 is a negative regulator in chloroplast gene expression. Further investigation indicated that gene expression of CND41 is cell-specifically and developmentally regulated as well as sugar-induced expression. The reduction of CND41 expression in transgenic tobacco also brought the stunted plant growth due to the reduced cell length in stem. GA3 treatment on apical meristem reversed the dwarf phenotype in the transformants. Effects of CND41 expression on GA biosynthesis will be discussed.

  • PDF

Ultrastructural Changes of Epididymal Epitheliurn during Sexual Maturation in Mouse (성적 성숙에 따른 생쥐 부정소 상피세포의 미세구조 변화)

  • 윤현수;최규완;김종흡;김문규
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.78-93
    • /
    • 1990
  • The ultrastructure of epididymal epithelium of 10, 20, 35 and 80 day-old mouse was observed to study the differentiation and function of the epithelial cells in connection with the absorption and secretion during sexual matruation. The differentiation of epididymis was divided into three phases of, 1) undiflerentiated phase until the day 20 after birth, 2) growing and differentiating phase between the day 20 and 35, and 3) maturating phase up to the adult. Each phase was closely related with the lumination of seminiferous tubule and the influx of spermatozoa within testicular fluid from testis. In adult, the ultrastructural features appeared an absorptive function in the principal cells of proximal caput epididymis, and a strong activity of protein synthesis and secretion in distal caput, corpus and cauda epididymis. Clear cells were predominantly located in corpus and cauda epidiymis, and plenty of absorption vesicles including membranous particles assumed to be the cellular residues from spermatozoa were observed at apical region. Therefore, the distribution of various cell types of epithelium and the ultrastructure even in the same type of epithelial cell, were different according to the epididymal regions.

  • PDF

Cross-sectional Cell Anatomy and Physiological Growth Responses of Cells in Root Growth Zones of Two Tall Fescue Genotypes at Two Nitrogen Levels (톨페스큐 뿌리생장부위의 횡적 해부구조 및 세포생장의 생리적 반응에 대한 질소효과)

  • Beom Heon, Song;Curtis J, Nelson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.3
    • /
    • pp.297-307
    • /
    • 1995
  • Anatomical and physiological studies of sink tissues are required for better understanding the biological plant growth system and energy metabolism Anatomy of root growth zones of two genotypes of tall fescue (Festuca arundinacea Schreb.) receiving 50 or 200 ppm N were determined, Cross-sectional anatomy and cells responses of root growth zones were observed and examined. Rapid radial root expansion occurred within the first 1.0 mm from root apex, and then increased gradually for both genotypes and N levels. Another increase in diameter occurred at high N after cell elongation slowed near 3.0 mm. Area of the central cylinder cell increased rapidly near the root apex. However, it then decreased again about 1.0 to 1.5 mm from the apex, perhaps because of pressure from the rapid increase of root diameter due largely to an increasing proportion of cortex and epidermis or hypodermis in the distal portion of the root growth zone. Root area from the apical initial to 6.0 mm distal consisted of 10 to 18% epidermis or exodermis, 67 to 79% cortex, and 10 to 22% vascular cylinder cells containing cambium cells (6 to 20%) and xylem cells (0.8 to 2.5%). These data indicate that N application affects root growth radially by increasing mainly cortex cell area, with less effect on epidermis and central cylinder cells.

  • PDF

Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase (핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase)

  • 한창열
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.6
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF

Studies on Growth Response and Ectomycorrhizal Identification of Quercus acutissima Seedling Inoculated with Ectomycorrhizal Fungi Isolated in Chonnam Province (전남지방(全南地方)에서 분리(分離)된 외생균근균(外生菌根菌)의 접종(接種)에 의한 상수리나무묘목(苗木)의 생장반응(生長反應)과 균근(菌根)의 분류학적(分類學的) 연구(硏究))

  • Oh, Kwang In;Jung, Nam Chul;Park, Whoa Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.366-380
    • /
    • 1993
  • Quercus acutissima ectomycorrhizae were classified as apical type, linear type, clavate type, diffuse type, pyramidal type, coralloid type, and nodular type. The surface texture of the fungal mantle at the initial stage of mycorrhizal formation was velvety. The surface texture of Pisolithus tinctorius(Pt) mycorrhizae at 30 September was well-developed felty mantle, Yellowish white. Except Pt all mycorrhizae formed by ectomycorrhizal fungi used to experiment were white with felty mantle. Mycorrhizae at the initial stage of mycorrhizae formation were creamy or creamy brown and swelled with thin mantle. Transverse and longitudinal sections showed radially-elongated cortical cell layers and epidermal cell with Hartig net. The transversal wideth of radially-elongated cortical and epidermal cells in the mycorrhizae with thick mantle on 30 September did not different with the mycorrhizae with thin mantle on the initial stage. Pt #250 formed coralloid mycorrizae but Pt KJ-1 did not although they are same species. On the mean length of linear type ectomycorrhizae of Pt KJ-1(2.21mm) was 1.5 times longer than that of Pt #250(1.32mm). The total dry weight of seedlings inoculated with Pt KJ-1, Pt #250, Lycoperdon pedicellatum, Scleroderma verrucosum were significantly heavier than those of suillus granulatus, Laccaria laccata.

  • PDF

Effects of CsCl on the Early Root Growth of Maize (Zea mays) (옥수수(Zea mays) 뿌리의 초기 생장에 미치는 CsCl의 영향)

  • Park, Woong-June
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.298-303
    • /
    • 2010
  • In this work, the effects of $Cs^+$ on root growth of 2-day-old maize seedlings were scrutinized. CsCl (5 mM - 30 mM) decreased the fresh weight of the primary root and of the shoot above the coleoptilar node. The elongation growth of the primary root was also inhibited by CsCl. The CsCl-inhibited growth was partially restored by 60 mM KCl. Lineweaver-Burk plot of the reaction in the presence and absence of 60 mM KCl displayed competitive interaction of CsCl (at higher than 10 mM). However, the Reversal of the inhibition by 60 mM KCl did not follow the competitive relationship with 5 mM CsCl, indicating the presence of differential mechanisms of $K^+$ influence depending on the concentration of CsCl. The differential effects of CsCl dependent on the concentrations were also observed in the CsCl-evoked radial expansion of the subapical region of the root. In spite of the decrease in length of the root, shrinkage of the root apical meristem was not observed. CsCl above 10 mM induced the expression of ZmKUP1, indicating functional deficiency of $K^+$ due to competition with Cs. However, the expression of ZmKUP1 by 5 mM CsCl was unclear. Conclusively, exogenously applied $Cs^+$ decreased root elongation and fresh weight and caused radial expansion of the subapical region of the primary root in 2-day-old maize seedlings by complex mechanisms including competitive and noncompetitive interactions with $K^+$. Because the shrinkage of the root apical meristem was not observed, it is concluded that the effects of CsCl on maize root growth was mainly related to cell expansion.