• Title/Summary/Keyword: Apatite precipitation

Search Result 23, Processing Time 0.023 seconds

Synthesis and bioactivity evaluation of metal ion-substitution biphasic calcium phosphate for bone defect reconstruction (골결손부 재건을 위한 금속 이온 치환 이상인산칼슘 합성 및 생체 활성 평가)

  • Kim, Tae-Wan;Kim, Dong-Hyun;Jin, Hyeong-Ho;Lee, Seung Ho;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.279-285
    • /
    • 2012
  • The co-precipitation technique has been applied to synthesize Biphasic Calcium Phosphate (BCP), Mg-BCP and Si-BCP. X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy were used to characterize the structure of synthesized BCP, Mg-BCP and Si-BCP powders. The results have shown that BCP and substitution of magnesium and silicon in the calcium deficient apatites revealed the formation of biphasic mixtures of Hydroxyapatite (HAp)/${\beta}$-Tricalcium phosphate (${\beta}$-TCP) ratios after heating at $1000^{\circ}C$. Ionic substituted BCP is able to develop a new apatite phase on the surface in contact with physiological fluids faster than BCP does. An MTT assay indicated that BCP, Mg-BCP, and Si-BCP powders had no cytotoxic effects on MG-63 cells, and that they have good biocompatibility.

Effect of Alkali and Heat Treatments of Ti-6Al-4V Alloy on the Precipitation of Calcium Phosphate (Ti-6Al-4V 합금의 알칼리 및 열처리가 인산칼슘 침착에 미치는 영향)

  • Park, Jae-Han;Lim, Ki-Jung;Kim, Sang-Mok;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.187-203
    • /
    • 2000
  • The precipitation of calcium phosphate on implant surface has been known to accelerate osseointegration and to enhance osseous adaptation. The present study was performed to examine whether the precipitation of calcium phosphate on Ti-6Al-4V alloy could be affected by the immersion in NaOH solution and heat treatment. Ti-6Al-4V alloy plates of $15{\times}3.5{\times}1mm$ in dimension were polished sequentially from #240 to #2,000 emery paper and one surface of each specimen was additionally polished with $0.1{\mu}m$ alumina paste. Polished specimens were soaked in various concentrations of NaOH solution(0.1, 1.0, 3.0, 5.0, 7.0, 10.0 M) at $60^{\circ}C$ for 24 hours for alkali treatment, and 5.0 M NaOH treated specimens were heated for 1 hour at each temperature of 400, 500, 600, 700, $800^{\circ}C$. After the alkali and heat treatments, specimens were soaked in the Hank's solution with pH 7.4 at $36.5^{\circ}C$ for 30days.The surface ingredient change of Ti-6Al-4V alloy was evaluated by thin-film X-ray diffractometer(TF-XRD) and the surface microstructure was observed by scanning electron microscope(SEM), and the elements of surface were analyzed by X-ray photoelectron spectroscopy(XPS). The results were obtained as follows ; 1. The precipitation of calcium phosphate on Ti-6Al-4V alloy was accelerated by the immersion in NaOH solution and heat treatment. 2. In Alkali treatment for the precipitation of calcium phosphate on Ti-6Al-4V alloy, the optimal concentration of NaOH solution was 5.0 M. 3. In heat treatment after alkali treatment in 5.0 M NaOH solution, the crystal formation on alloy surface was enhanced by increasing temperature. In heat treated alloys at $600^{\circ}C$, latticed structure and prominences of calcium phosphate layer were most dense. On heat treated alloy surface at the higher temperature(${\geq}700^{\circ}C$), main crystal form was titanium oxide rather than apatite. The above results suggested that the precipitation of calcium phosphate on the surface of Ti-6Al-4V alloy could be induced by alkali treatment in 5.0 M-NaOH solution and by heat treatment at $600^{\circ}C$.

TOWARDS A SAFER ENVIRONMENT: 3) PHOSPHATIC CLAYS AS SOLUTION FOR REMOVING PB2+ FROM WASTEWATER

  • ABDALLAH SAMY MOHAMED
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09b
    • /
    • pp.1179-1180
    • /
    • 2005
  • To immobilize the pollutants from wastewater in situ, two phosphatic clays collected from different areas in Egypt (eastern and western Sebaia, Aswan-Isna, Upper Egypt) used to remove contaminant ions from industrial wastewater. Obtained results confirmed the strong relationship between phosphatic clay and Pb elimination from wastewater. The sensitivity classification of phosphatic clay toward ions retained as described in three categories: highly sensitive to retain Pb , Al and Cr ; moderately sensitive for Mn; and weakly sensitive for Band Zn. Data suggested that large fraction of Pb removed by phosphatic clays stayed intact under a wide variation in extracting solution pH (3-11). In situ immobilization is considered a promising technique that has the potential to remove contaminant ions from wastewater. Two important factors need to be considered when applying this technique: The first, is the clay must be effective and selective under different composition of wastewater. The second, is the immobilized ions should be stable and non-leacheable under varying water conditions. Phosphatic clays with $Pb^{2+}$ were suitable to achieve these two factors. Possible mechanism for removal $Pb^{2+}$ by phosphatic clays is the formation of fluoropyromorphite through the dissolution of fluoro and hydroxyl apatite by its precipitation from solution, beside, Pb complexation at phosphatic clay surface at P-OH sites.

  • PDF

Effects of Heat-treatment on Crystallization and Mechanical Properties of Glass ceramics for Dental crown prosthesis in the system $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$ (치관보철용 $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$계 글라스 세라믹의 결정화와 기계적 물성에 미치는 열처리 조건의 영향)

  • Chung, In-Sung;Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.77-88
    • /
    • 2004
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-P2O5-TiO2 glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature and holding time in relation to mechanical properties. The results are as follows: Vickers hardness and bending strength of glass ceramics increased due to the precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix. The final crystalline phase assemblages and the microstructures of the glass ceramics were found to be dependent on heat-treatment temperature and holding time. Vickers hardnes and bending strength of glass ceramics increased with increasing heat-treatment temperature and holding time.

  • PDF

HRTEM Analysis of Apatite Formed on Bioactive Titanium in Modified-SBF (수정된 유사체액 내에서 티타늄에 생성된 아파타이트의 고분해능 전자현미경에 의한 분석)

  • Kim, Hyun-Ook;Kim, Woo-Jeong;Lee, Kap-Ho;Hon, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.408-413
    • /
    • 2007
  • Process of the hydroxyapapite(HA) precipitation on bioactive titanium metal prepared by NaOH in a modified-simulated body fluid(mSBF) was investigated by high resolution transmission electron microscope (HRTEM) attached with energy dispersive X-ray spectrometer(EDX). The amorphous titanate phase on titanium surface is form by NaOH treatment and an amorphous titanate incorporated calcium and phosphate ions in the liquid to form an amorphous calcium phosphate. With increasing of soaking time in the liquid, the HA particles are observed in amorphous calcium phosphate phase with a Ca/P atomic ratio of I.30. The octacalcium phosphate (OCP) structure is not detected in HRTEM image and electron diffraction pattern. After a long soaking time, the HA particles grow as needle-like shape on titanium surface and a large particle-like aggregates of needle-like substance were observed to form on titanium surface within needle-like shape. A long axis of needle parallels to c-direction of the hexagonal HA structure.

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.

Bioactivity enhancement of zirconia substrate by surface coating of diopside bioceramics using sol-gel method (솔젤법에 의한 다이옵사이드 생체 세라믹의 표면코팅 및 지르코니아 기판의 생체활성 증진)

  • Park, Hyunjung;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.183-190
    • /
    • 2022
  • Diopside (CaMgSi2O6) is known to have high bioactivity as well as excellent mechanical properties. In this study, we tried to improve the bioactivity of zirconia ceramics by surface coating of diopside and its bioactivity was investigated through an in vitro test. Surface coating on zirconia substrate was prepared by sol-gel method using a diopside sol which was prepared by dissolving Ca(NO3)2·4H2O, MgCl2·6H2O and Si(OC2H5)4 in ethanol with a fixed molar ratio and then hydrolysis. To examine the bioactivity of diopside coating, we examined the surface dissolution and the precipitation of new hydroxyapatite particles through in vitro test in SBF (Simulated Body Fluid) solution. Dense and thick diopside coating layers could be fabricated on zirconia substrate by sol-gel method. Also, we confirmed that they contained high bioactivity from the in vitro test, indicated the precipitation of hydroxyapatite particles after the 14 days immersion in SBF solution. In addition, we checked that the bioactivity of diopside coated layers was dependent on the repeated coating cycle and coating thickness.

Evaluation of Bioactivity of Titanium Implant Treated with H2O2/HCl Solution (H2O2/HCl 처리한 Ti 임플란트의 생체활성 평가)

  • Yue J. S.;Kwon O. S.;Lee O. Y.;Lee M. H.;Song K. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.353-360
    • /
    • 2005
  • Surface treatment play an important role in nucleating calcium phosphate deposition on surgical Ti implant. Therefore, the purpose of this study is to examine whether the precipitation of apatite on cp-Ti and Ti alloys are affected by surface modification in HCl and $H_2O_2$ solution. Specimens were then chemically treated with a solution containing 0.1 M HCl and 8.8M $H_2O_2$ at $80^{\circ}C$ for 30 mins, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface was examined with XRD, SEM, EDX ana XPS. Also, pure Ti, Ti-6Al-4V and Ti-6Al-7Nb alloy specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. All specimens chemically treated with HCl and $H_2O_2$ solution have the ability to form a apatite layer in the HBSS which has inorganic ion composition similar to human blood plasma. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $38.57\;{\mu}m,\;62.27\;{\mu}m\;and\;45.64\;{\mu}m$ in the cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloy specimens with the chemical treatment respectively, and $52.20\;{\mu}m,\;75.62\;{\mu}m\;and\;66.56\;{\mu}m$ in the commercial specimens of cp-Ti, Ti-6Al-4V and Ti-6Al-7Nb without any treatment respectively. The results of this evaluation indicate that the chemically treated cp-Ti, Ti-6Al-4V ana Ti-6Al-7Nb alloys have better bioactivity and biocompatibility compared to the other metals tested.

EFFECT OF CHEMICAL TREATMENT ON THE BIOACTIVITY OF TITANIUM (화학적 처리가 티타늄의 생체활성도에 미치는 영향)

  • Min Kwan-Sik;Lee Min-Ho;Ahn Seung-Geun;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.562-572
    • /
    • 2005
  • Statement of problem : Titanium is widely used as an implant material lot artificial teeth. Also, studies on surface treatment to form a fine passive film on the surface of commercial titanium or its alloys and improving bioactivity with bone have been carried out. However, there is insufficient data about the biocompatibility of the implant materials in the body. Purpose: The purpose of this study was to examine whether the precipitation of apatite on titanium metal is affected by surface modification. Materials and methods: Specimens chemically washed for 2 minute in a 1:1:1.5 (in vol%) mixture of 48% HF 60% $HNO_3$ and distilled water. Specimens were then chemically treated with a solution containing 97% $H_2SO_4$ and 30% $H_2O_2$ at $40^{\circ}C$S for 1 hour, and subsequently heat-treated at $400^{\circ}C$ for 1 hour. All specimens were immersed in the HBSS with pH 7.4 at $36.5^{\circ}C$ for 15 days, and the surface were examined with TF-XRD, SEM, EDX and XPS. Also, commercial purity Ti specimens with and without surface treatment were implanted in the abdominal connective tissue of mice for 4 weeks. Conventional aluminium and stainless steel 316L were also implanted for comparison. Results and conclusions : The results obtained were summarized as follows. 1. An amorphous titania gel layer was formed on the titanium surface after the titanium specimen was treated with a $H_2SO_4$ and $H_2O_2$ solution. The average roughness was $2.175{\mu}m$ after chemical surface treatment. 2. The amorphous titania was subsequently transformed into anatase by heat treatment at $400^{\circ}C$ for 1 hour. 3. The average thickness of the fibrous capsule surrounding the specimens implanted in the connective tissue was $46.98{\mu}m$ in chemically-treated Ti, and 52.20, 168.65 and $100.95{\mu}m$ respectively in commercial pure Ti, aluminum and stainless steel 316L without any treatment.

Evaluation of Biocompatibility of Anodized and Hydrothermally Treated Pure Niobium Metal (양극산화와 열수처리한 순수 니오비움 금속의 생체활성 평가)

  • Won, Dae-Hee;Choi, Un-Jae;Lee, Min-Ho;Bae, Tae-Sung
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.79-88
    • /
    • 2005
  • This study was performed to investigate the surface properties of electrochemically oxidized pure niobium by anodic oxide and hydrothermal treatment technique. Niobium specimens of $10\times10mm$ in dimension were polished sequentially from #600, #800, #1000 emery paper. The surface pure niobium specimens were anodized in an electrolytic solution that was dissolved calcium and phosphate in water. The electrolytic voltage was set in the range of 250 V and the current density was 10 $mA/cm^2$. The specimen was hydrothermal treated in high-pressure steam at 300$^{\circ}C$ for 2 hours using an autoclave. Then, specimens were immersed in the Hanks' solution with pH 7.4 at 37$^{\circ}C$ for 30 days. The surface of specimen was characterized by scanning electron microscope(SEM), energy dispersive X-ray microanalysis(EDX), potentiostat/galvanostat test, and cytotoxicity test. The results obtained was summarized as follows; According to the result of measuring corrosion behavior at 0.9% NaCl, corrosion resistance was improved more specimens treated with anodic oxide than in hydrothermal treated ones. The multi-porous oxide layer on surface treated through anodic oxidation showed a structure that fine pores overlap one another, and the early precipitation of apatite was observed on the surface of hydrothermal treated samples. According to the result of EDX after 30 days deposition in Hanks' solution, Ca/P was 1.69 in hydrothermal treated specimens. In MTT test, specimens treated through anodic oxidation and hydrothermal treated ones showed spectrophotometer similar to that of the control group. Thus no significant difference in cytotoxicity was observed (P>0.05).

  • PDF