• Title/Summary/Keyword: Apache Spark analysis

Search Result 17, Processing Time 0.025 seconds

Apache Spark and Map Reduce with Performance Analysis using K-Means (K-means를 이용한 아파치 스파크 및 맵 리듀스 성능 분석)

  • Jung, Young-Gyo;Jung, Dong-Young;Song, Jun-Seok;You, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.77-78
    • /
    • 2016
  • 빅 데이터의 데이터 수집 및 분석 기술에 대한 연구는 컴퓨터 과학 분야에서 각광 받고 있다. 또한 소셜 미디어로 인한 대량의 비정형 데이터 분석을 요구하는 다양한 분야에 접목되어 효용성을 인정받고 있다. 그러나 빅 데이터 개념을 기반으로 하는 하둡과 스파크는 유즈케이스에 따라 성능이 크게 달라진다는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 하둡의 맵리듀스를 줄이고 아파치 스파크를 이용한 빅 데이터 분석을 위하여 머신러닝 알고리즘인 K-Means 알고리즘을 이용하여 프로세싱 모델의 성능을 비교한다.

  • PDF

Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

  • Ayub, Umer;Ahsan, Syed M.;Qureshi, Shavez M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1146-1165
    • /
    • 2022
  • A huge amount of data in the form of videos and images is being produced owning to advancements in sensor technology. Use of low performance commodity hardware coupled with resource heavy image processing and analyzing approaches to infer and extract actionable insights from this data poses a bottleneck for timely decision making. Current approach of GPU assisted and cloud-based architecture video analysis techniques give significant performance gain, but its usage is constrained by financial considerations and extremely complex architecture level details. In this paper we propose a data pipeline system that uses open-source tools such as Apache Spark, Kafka and OpenCV running over commodity hardware for video stream processing and image processing in a distributed environment. Experimental results show that our proposed approach eliminates the need of GPU based hardware and cloud computing infrastructure to achieve efficient video steam processing for face detection with increased throughput, scalability and better performance.

FAST Design for Large-Scale Satellite Image Processing (대용량 위성영상 처리를 위한 FAST 시스템 설계)

  • Lee, Youngrim;Park, Wanyong;Park, Hyunchun;Shin, Daesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.372-380
    • /
    • 2022
  • This study proposes a distributed parallel processing system, called the Fast Analysis System for remote sensing daTa(FAST), for large-scale satellite image processing and analysis. FAST is a system that designs jobs in vertices and sequences, and distributes and processes them simultaneously. FAST manages data based on the Hadoop Distributed File System, controls entire jobs based on Apache Spark, and performs tasks in parallel in multiple slave nodes based on a docker container design. FAST enables the high-performance processing of progressively accumulated large-volume satellite images. Because the unit task is performed based on Docker, it is possible to reuse existing source codes for designing and implementing unit tasks. Additionally, the system is robust against software/hardware faults. To prove the capability of the proposed system, we performed an experiment to generate the original satellite images as ortho-images, which is a pre-processing step for all image analyses. In the experiment, when FAST was configured with eight slave nodes, it was found that the processing of a satellite image took less than 30 sec. Through these results, we proved the suitability and practical applicability of the FAST design.

Wellness Prediction in Diabetes Mellitus Risks Via Machine Learning Classifiers

  • Saravanakumar M, Venkatesh;Sabibullah, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.203-208
    • /
    • 2022
  • The occurrence of Type 2 Diabetes Mellitus (T2DM) is hoarding globally. All kinds of Diabetes Mellitus is controlled to disrupt over 415 million grownups worldwide. It was the seventh prime cause of demise widespread with a measured 1.6 million deaths right prompted by diabetes during 2016. Over 90% of diabetes cases are T2DM, with the utmost persons having at smallest one other chronic condition in UK. In valuation of contemporary applications of Big Data (BD) to Diabetes Medicare by sighted its upcoming abilities, it is compulsory to transmit out a bottomless revision over foremost theoretical literatures. The long-term growth in medicine and, in explicit, in the field of "Diabetology", is powerfully encroached to a sequence of differences and inventions. The medical and healthcare data from varied bases like analysis and treatment tactics which assistances healthcare workers to guess the actual perceptions about the development of Diabetes Medicare measures accessible by them. Apache Spark extracts "Resilient Distributed Dataset (RDD)", a vital data structure distributed finished a cluster on machines. Machine Learning (ML) deals a note-worthy method for building elegant and automatic algorithms. ML library involving of communal ML algorithms like Support Vector Classification and Random Forest are investigated in this projected work by using Jupiter Notebook - Python code, where significant quantity of result (Accuracy) is carried out by the models.

Development of Procurement Announcement Analysis Support System (전자조달공고 분석지원 시스템 개발)

  • Lim, Il-kwon;Park, Dong-Jun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.53-60
    • /
    • 2018
  • Domestic public e-procurement has been recognized excellence at home and abroad. However, it is difficult for procurement companies to check the related announcements and to grasp the status of procurement announcements at a glance. In this paper, we propose an e-Procurement Announcement Analysis Support System using the HDFS, HDFS, Apache Spark, and Collaborative Filtering Technology for procurement announcement recommendation service and procurement announcement and contract trend analysis service for effective e-procurement system. Procurement announcement recommendation service can relieve the procurement company from searching for announcements according to the characteristics and characteristics of the procurement company. The procurement announcement/contract trend analysis service visualizes the procurement announcement/contract information and procures It is implemented so that the analysis information of electronic procurement can be seen at a glance to the company and the demand organization.

Energy Big Data Pre-processing System for Energy New Industries (에너지신산업을 위한 에너지 빅데이터 전처리 시스템)

  • Yang, Soo-Young;Kim, Yo-Han;Kim, Sang-Hyun;Kim, Won-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.851-858
    • /
    • 2021
  • Due to the increase in renewable energy and distributed resources, not only traditional data but also various energy-related data are being generated in the new energy industry. In other words, there are various renewable energy facilities and power generation data, system operation data, metering and rate-related data, as well as weather and energy efficiency data necessary for new services and analysis. Energy big data processing technology can systematically analyze and diagnose data generated in the first half of the power production and consumption infrastructure, including distributed resources, systems, and AMI. Through this, it will be a technology that supports the creation of new businesses in convergence between the ICT industry and the energy industry. To this end, research on the data analysis system, such as itemized characteristic analysis of the collected data, correlation sampling, categorization of each feature, and element definition, is needed. In addition, research on data purification technology for data loss and abnormal state processing should be conducted. In addition, it is necessary to develop and structure NIFI, Spark, and HDFS systems so that energy data can be stored and managed in real time. In this study, the overall energy data processing technology and system for various power transactions as described above were proposed.

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.