• Title/Summary/Keyword: Aortic stiffness

Search Result 16, Processing Time 0.024 seconds

Development of Feature Points Detection Algorithm for Measuring of Pulse Wave Velocity (맥파 전달 속도(PWV) 측정을 위한 특징점 검출 알고리즘 개발)

  • Choi, Jung-Hyeon;Cho, Wook-Hyun;Park, Jun-Ho;Kim, Nam-Hoon;Seong, Hyang-Sook;Cho, Jong-Man
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.343-350
    • /
    • 2011
  • The compliance and stiffness of artery are closely related with disease of arteries. Pulse wave velocity(PWV) in the blood vessel is a basic and common parameter in the hemodynamics of blood pressure and blood flow wave traveling in arteries because the PWV is affected directly by the conditions of blood vessels. However, there is no standardized method to measure the PWV and it is difficult to measure. The conventional PWV measurement has being done by manual calculation of the pulse wave transmission time between coronary arterial proximal and distal points on a strip chart on which the pulse wave and ECG signal are recorded. In this study, a pressure sensor consisting of strain gauges is used to measure the blood pressure of arteries in invasive method and regular ECG electrodes are used to record the ECG signal. The R-peak point of ECG is extracted by using a reference level and time windowing technique and the ascending starting point of blood pressure is determined by using differentiation of the blood pressure signal and time windowing technique. The algorithm proposed in this study, which can measure PWV automatically, shows robust and good results in the extraction of feature points and calculation of PWV.

A Study of the Cardiovascular Aging Effect on the Pulse Shape (심혈관 노화가 맥상(脈象)에 미치는 영향)

  • Shin, Sang-Hoon;Rhim, Hye-Whon;Park, Young-Jae;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 2005
  • Background and purpose: Cardiovascular disease will undoubtedly rise along with the aging of the 'baby-boom' generation. The purpose of this study is to find the new index of the cardiovascular aging. Methods: The effects of aging on the heart and the arterial system are surveyed in the point of structure and function. Results: Arterial stiffening is due to the fatiguing effects of periodic stress on the arterial wall and is the main reason for increasing pulse wave velocity. The systolic hypertension is caused by the early return of wave reflection. The increased after-load by the arterial change leads to the development of left ventricular hypertrophy. The reduction in left ventricular compliance cause the impairments of the diastolic function. In contrast to the lower limb, aging effect in the upper limb are almost due to the ascending aortic pressure wave and the reflected wave from the lower limb. Conclusion: We have the following points. (1) The change of physiological pulse pattern by age can be explained by the early returning of reflected wave. (2) The atrial pulse in old age are generated by the left ventricular hypertrophy.

  • PDF

Characteristic behaviors of the AIx depending on the palpation positions (맥진 위치에 따른 AIx 변화 특성 연구)

  • Jeon, Young-Ju;Kim, Jae-Uk;Lee, Yu-Jung;Ryu, Hyun-Hee;Lee, Hae-Jung;Woo, Young-Jae;Kim, Jong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1966_1967
    • /
    • 2009
  • As an attempt to characterize the pulse behaviors at the three pulse diagnosis positions in the oriental medicine which are called Chon, Gwan, and Cheok, we measure the pluse waveforms by SphygmoCor apparatus, that has been used widely for the evaluation of the arterial stiffness, and examine the Augmentation Index (AIx) at the aorta. For the study, twenty healthy men at the age of twenties have participated as the subject group. The pulse has been measured twice at the three palpation positions, and by two-way repeated measures ANOVA we tested the repeatability and the mean differences in the aortic AIx between Chon, Gwan, and Cheok. The AIx was found to be statistically different between the measurement positions. Duncan's test shows that the AIx is statistically different between Chon and the other two positions. Our study may be used as a reference for further scientific quantification of the pulse diagnosis.

  • PDF

An Example of Test on Differences of Pulse Waveform Characteristics at Cun, Guan and Chi (촌, 관, 척 위치의 맥파 특징 차이 검정에 대한 1례)

  • Lee, Jeon;Lee, Yu-Jung;Jeon, Young-Ju;Lee, Hae-Jung;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.2
    • /
    • pp.107-112
    • /
    • 2008
  • Although the pulse diagnosis position, Guan is apart from Cun or Chi by only $10{\sim}20$ mm at most, traditional medical doctors applies different indent pressures and even they states different pulse images are felt at Cun, Guan and Chi, To support their clinical behaviors, in this study, we tested statistically whether there are differences in pulse waveform measured at these three positions with SphygmoCor system used world widely, A 30 years old female subject without any evidence of cardiovascular diseases was involved in this experiment. Radial pulse waves were recorded at three different positions on left lower arm 10 times at three positions-Cun, Guan and Chi. With ANOVA, we tested whether, among three different positions. there are any differences in 12 parameters of radial pulse waveform and in estimated AIx(Augmentation Index) as an arterial stiffness index extracted from radial pulse waveform. As results, differences in optimal indent pressure h0 were observed at different measuring positions(P<0.001) but not significantly different. And pulse pressure his were found to be different(Chi$22.60{\pm}3.06%,\;18.60{\pm}3.37%\;and\;26.4{\pm}5.02%$ respectively. Consequently. AIx at Gwan seems to be lowest and that at Chi seems to be highest. So. we assert the AIx at Chi is likely to be overestimated. In further studies. we want to examine what make differences in these parameters between measuring positions. And it also seems to be worthy to investigate the relationship between the depth of radial artery and AIx. And, ultimately, we need to determine the best measuring process including measuring position, hold-down pressure, signal quality validation and so on. so to achieve the optimal waveform which represents subject's health condition for both western medicine and traditional medicine.

  • PDF

Development of an Measuring System for Pulse Wave Corresponding to Different Radial Artery Diameters Caused by Indentation (요골동맥 직경 변화에 따른 맥파 측정 시스템 개발)

  • Lee, Jeon;Woo, Young-Jae;Jeon, Young-Ju;Lee, Yu-Jung;Kim, Jong-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2351-2357
    • /
    • 2008
  • Noninvasive radial artery pulse wave has been widely used not only for the pulse wave analysis(PWA) itself but also for assessment of arterial stiffness with estimated aortic pulse wave from peripheral pulse wave. However, it has been found that the deformation of pulse shape can be caused readily by changing measuring position, indentation pressure, and so on. So, in this study, we have developed a system which can measure radial pulse wave and skin displacement simultaneously while the indentation body goes down to occlude subject's radial artery. This system can be divided into a measuring apparatus part, an indentation control hardware part, a data acquisition part and a control and computation part. And, the measuring apparatus consists of an arm-rest, a step motor, an indentation body, a laser displacement sensor(LK-G30, Keyence Co.) and pulse wave sensor. Under load-free condition and radial artery loaded condition, the evaluation of developed system has been performed. From these results, we can conclude: 1) The developed system can control the indentation body quantitatively and the adopted laser displacement sensor shows linear output characteristic even with skin as a reflector. 2) This system can measure the pulse wave and the displacement of indentation body, that is, skin displacement simultaneously at each specific level of indentation body. 3) This system can provide the number of motor steps used to get down the indentation body, the measured skin displacement, the calculated indentation pressure, the calculated pulse pressure and the pulse waveform as well as the information generated by combining these with each others. 4) This system can reveal the relationship between the morphological changes of pulse wave and the estimated displacement of radial artery wall by indentation. Consequently, the developed system can furnish more abundant information on radial artery than previous diagnosis systems based on tonometric measurement. In further study, we expect to setup the standard measuring process and to concrete the algorithm for the estimation of radial artery's diameter and of displacement of radial artery's wall. Furthermore, with well designed clinical studies, we hope to turn out the usefulness of developed system in the field of cardiovascular system evaluation.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF