• Title/Summary/Keyword: Antral circular muscle

Search Result 19, Processing Time 0.024 seconds

A Study on the $Na^+/Ca^{2+}$ Exchange Mechanism in the Smooth Muscle of Guinea-pig Stomach

  • Kim, Eui-Yong;Han, Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 1992
  • The effects of changes in extracellular $Na^+\;and\;Ca^+$ concentration on the membrane potential and contractility were studied in the antral circular muscle of guinea pig stomach in order to elucidate the existence and the nature of $Na^+/Ca^{2+}$ exchange mechanism. All experiments were performed in tris buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C.$ The treatment of $10^{-5}$ ouabain was performed to induce intracellular $Na^+$ loading prior to the start of experiment. The results were as follows: 1. $Na^+$-free Tyrode or high $Ca^{2+}$-Tyrode solution hyperpolarized the membrane potential and induced contracture. The time course of contracture was similar to that of change in membrane potential. 2. The degree of hyperpolarization and the amplitude of contracture decreased in accordance with the increase of extracellular $Na^+$ concentration. 3. $Na^+$-free contracture was developed even after blocking the influence of intrinsic nerves by the pretreatment with atropine, guanethidine and TTX. 4. $Ca^{2+}$-channel blockers(D-600 or $Mn^{2+}$) and the blocker of intracellular $Ca^{2+}$ release from sarcoplasmic reticulum(ryanodine) did not suppress the development of $Na^+$-free contracture. And also, dinitrophenol had no effect on $Na^+$-free contracture. 5. Dose-response relationship between extracellular $Na^+$ concentrations and the magnitude of contractures showed a sigmoid pattern. The slope of straight line from Hill plot was 2.7. 6. In parallel with the increase of extracellular $Ca^{2+}$ concentration, the amplitude of contracture increased dose dependently and was maximum at 8 mM $Ca^{2+}$-Tyrode solution. 7. The relationship between extracellular $Ca^{2+}$ concentrations and the magnitude of contractures showed hyperbolic pattern. The slope of straight line from Hill plot was 1.1. From the above results, it is suggested that $Na^+/Ca^{2+}$ exchange mechanism exists in the antral circular muscle of guinea pig stomach and this mechanism affects the membrane potential electrogenically.

  • PDF

Effects of Noradrenaline on the Spontaneous Contraction and Ionic Current in the Antral Circular Muscle of Guinea-pig Stomach

  • Jun, Jae-Yeoul;Lee, Sang-Jin;Kim, Sung-Joon;Suh, Jae-Yul;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.115-122
    • /
    • 1993
  • There is evidence that noradrenaline enhances spontaneous contractions dose-dependently in guinea-pig antral circular muscle. To investigate the mechanism of this excitatory action, slow waves and membrane currents were recorded using conventional microelectrode techniques in muscle strips and the whole cell patch clamp technique in isolated gastric myocytes. On recording slow waves, noradrenaline $(10^{-5}\;M)$ induced the hyperpolarization of the membrane potential, although the shape of the slow waves became tall and steep. Also, spike potentiaIs occurred at the peaks of slow waves. These changes were completely reversed by administration of phentolamine $(10^{-5}\;M),\;an\;{\alpha}-adrenoceptor$ blocker. Noradrenaline-induced hyperpolarization was blocked by apamin $(10^{-7}\;M)$, a blocker of a class of $Ca^{2+}\;-dependent\;K^+$ channels. To investigate the mechanisms for these effects, we performed whole cell patch clamp experiments. Norndrenaline increased voltage-dependent $Ca^{2+}$ currents in the whole range of test potentials. Noradrenaline also increased $Ca^{2+}\;-dependent\;K^+$\;currents, and this effects was abolished by apamin. These results suggest that the increase in amplitude and the generation of spike potentials on slow waves was caused by the activation of voltage-dependent $Ca^{2+}$ channel via adrenoceptors, and hyperpolarization of the membrane potential was mediated by activation of apamin-sensitive $Ca^{2+}\;-dependent\;K^+\;channels$.

  • PDF

Effects of Lemakalim, a Potassium Channel Opener, on the Contractility and Electrical Activity of the Antral Circular Muscle in Guinea-Pig Stomach

  • Kim, Sung-Joon;Jun, Jae-Yeoul;Choi, Youn-Baik;Kim, Ki-Whan;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.37-50
    • /
    • 1994
  • Synthetic potassium channel openers (KCOs) are agents capable of opening K-channels in excitable cells. These agents are known to have their maximal potency in the smooth muscle tissue, especially in the vascular smooth muscle. Much attention has been focused on the type of K-channel that is responsible for mediating the effects of KCOs. As the KCO-induced changes are antagonized by glibenclamide, an $K_{ATP}$ (ATP-sensitive K-channel) blocker in the pancreatic ${\beta}-cell,\;K_{ATP}$ was suggested to be the channel responsible. However, there also are many results in favor of other types of K-channel $$(maxi-K,\;small\;conductance\;K_{Ca,}\; SK_{ATP}) mediating the effects of KCOs. Effects of lemakalim, (-)enantiomer of cromakalim (BRL 34915), on the spontaneous contractions and slow waves, were investigated in the antral circular muscle of the guinea-pig stomach. Membrane currents and the effects on membrane currents and single channel activities were also measured in single smooth muscle cells and excised membrane patches by using the patch clamp method. Lemakalim induced hyperpolarization and inhibited spontaneous contractions in a dose-dependent manner. These effects were blocked by glibenclamide and low concentrations of tetraethyl ammonium (< mM). Glibenclamide blocked the effect of lemakalim on the membrane potential and slow waves. The mechanoinhibitory effect of lemakalim was blocked by pretreatment with glibenclamide. In a whole ceIl patch clamp condition, lemakalim largely increased outward K currents. These outward K currents were blocked by TEA, glibenclamide and a high concentration of intracelIular EGTA (10 mM). Volatage-gated Ca currents were not affected by lemakalim. In inside-out patch clamp experiments, lemakalim increased the opening frequency of the large conductance $Ca^{2+}-activated$ K channels $(BK_{Ca},\;Maxi-K).$ From these results, it is suggested that lemakalim induces hyperpolarization by opening K-channels which are sensitive to internal Ca and such a hyperpolarization leads to the inhibition of the spontaneous contraction.

  • PDF

Effects of Prostaglandin $E_2$ on the Spontaneous Contractions and Electrical Activities of the Antral Circular Muscle in Guinea-pig Stomach

  • Kim, Jong-Yoon;Kim, Sung-Joon;Kang, Tong-Mook;Lee, Sang-Jin;Jun, Jae-Yeoul;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.361-368
    • /
    • 1998
  • The spontaneous contractions of gastric smooth muscles are regulated by slow waves, which are modulated by both nervous system and humoral agents. This study was designed to examine the effects of prostaglandin $E_2$ ($PGE_2$) on the contractile and electrical activities of antral smooth muscles in guinea-pig stomach, using an intracellular recording technique. To elucidate the underlying mechanism for its effect on contractility, ionic currents were also measured using a whole-cell patch clamp method. The basal tone by $PGE_2$ was variable, whereas the magnitude of phasic contractions was reduced ($19.0{\pm}2.1%$, n=19). The resting membrane potentials were hyperpolarized ($-4.4{\pm}0.5%$ mV, n=10), and plateau potentials were lowered ($-2.9{\pm}0.5%$ mV, n=10). In most cases, however, the initial peak potentials of slow waves were depolarized more by $PGE_2$ than those of control. The frequency of the slows wave was increased from $5.7{\pm}0.2$ cycles/min to $6.5{\pm}0.2$ (n=22). Voltage-operated $Ca^{2+}$ currents were decreased by $PGE_2$ (n=5). Voltage-operated $K^+$ currents, both Ca-dependent and Ca-independent, were increased (n=5). These results suggest that $PGE_2$ plays an important role in the modulation of gastric smooth muscle activities, and its inhibitory effects on the contractility and activities of slow waves are resulted from both decrease of $Ca^{2+}$ currents and increase of $K^+$ currents.

  • PDF

Contractile and Electrical Responses of Guinea-pig Gastric Smooth Muscle to Bradykinin

  • Kim, Chul-Soo;Jun, Jae-Yeoul;Kim, Sung-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.233-241
    • /
    • 1995
  • The nonapeptide bradykinin has been shown to exhibit an array of biological activities including relaxation/contraction of various smooth muscles. In order to investigate the effects of bradykinin on the contractility and the electrical activity of antral circular muscle of guinea-pig stomach, the isometric contraction and membrane potential were recorded. Also, using standard patch clamp technique, the $Ca^{2+}-activated$ K currents were recorded to observe the change in cytosolic $Ca^{2+}$ concentration. $0.4 {\mu}M$ bradykinin induced a triphasic contractile response (transient contraction-transient relaxation-sustained contraction) and this response was unaffected by pretreatment with neural blockers (tetrodotoxin, atropine and guanethidine) or with apamin. Bradykinin induced hyperpolarization of resting membrane potential and enhanced the amplitude of slow waves and spike potentials. The enhancement of spike potentials was blocked by neural blockers. Both the bradykinin-induced contractions and changes in membrane potential were reversed by the selective $B_2$-receptor antagonist $(N{\alpha}-adamantaneacetyl-_{D}-Arg-[Hyp, Thy,_{D}-Phe]-bradykinin)$. In whole-cell patch clamp experiment, we held the membrane potential at -20 mV and spontaneous and transient changes of Ca-activated K currents were recorded. Bradykinin induced a large transient outward current, consistent with a calcium-releasing action of bradykinin front the intracellular calcium pool, because such change was blocked by pretreatment with caffeine. Bradykinin-induced contraction was also blocked by pretreatment with caffeine. From these results, it is suggested that bradykinin induces a calciumrelease and contraction through the $B_{2}$ receptor of guinea-pig gastric smooth muscle. Enhancement of slow wave activity is an indirect action of bradykinin through enteric nerve cells embedded in muscle strip.

  • PDF

Effect of Adenosine on the Mechanical and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 기계적 및 전기적 활동에 대한 아데노신 효과)

  • Kim, Heui-Jeen;Ko, Kwang-Wook;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.225-239
    • /
    • 1987
  • The effects of adenosine on the mechanical contractions and electrical activities were investigated in guinea-pig stomach. Spontaneous contractions of the antral region were recorded with force transducer, and the phasic contractions of fundic region were induced by electrical field stimulation. Electrical responses of smocth muscle cells were recored using glass capillary microelectrodes filled with 3M-KCl. Field stimulation was applied transmurally by using a pair of platinum wire (0.5 mm in diameter) placed on both sides of tissue. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows. 1) Adenosine suppressed the spontaneous contractions of antrum in a dose-dependent manner. 2) The inhibitory effect on antral spontaneous contractions was not influenced by the administration of guanethidine $(5{\times}10^{-6}\;M)$ and atropine $10^{-6}\;M$, or in the presence of dipyridamole $10^{-7}\;M$. 3) The phasic contractions of fundus induced by electrical field stimulation, which disappeared rapidly by the addition of tetrodotoxin $(3{\times}10^{-7}\;M)$, were potentiated by adenosine in the presence of guanethidine. 4) Adenosine decreased the amplitude and the maximum rate of rise of slow waves, and the increased amplitude and rate of rise evoked in the high calcium solution or in the presence of TEA were decreased by adenosine. 5) The non-adrenergic, non-cholinergic inhibitory junction potential (IJP) was inhibited by adenosine in the antral region, while the excitatory junction potential (EJP) in the fundic region was potentiated. From the above results, the following conclusions could be made. 1) Adenosine suppresses the spontaneous contractions of antrum strip by the decrease in amplitude and rate of rise of slow waves. 2) The release of neurotransmitter(s) from non-adrenergic, non-cholinergic nerve terminals is inhibited by adenosine.

  • PDF

Regulation of L-type Calcium Channel Current by Somatostatin in Guinea-Pig Gastric Myocytes

  • Kim, Young-Chul;Sim, Jae-Hoon;Lee, Sang-Jin;Kang, Tong-Mook;Kim, Sung-Joon;Kim, Seung-Ryul;Youn, Sei-Jin;Lee, Sang-Jeon;Xu, Wen Xie;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • To study the direct effect of somatostatin (SS) on calcium channel current ($I_{Ba}$) in guinea-pig gastric myocytes, $I_{Ba}$ was recorded by using whole-cell patch clamp technique in single smooth muscle cells. Nicardipine ($1{\mu}M$), a L-type $Ca^{2+}$ channel blocker, inhibited $I_{Ba}$ by $98{\pm}1.9$% (n=5), however $I_{Ba}$ was decreased in a reversible manner by application of SS. The peak $I_{Ba}$ at 0 mV were decreased to $95{\pm}1.5$, $92{\pm}1.9$, $82{\pm}4.0$, $66{\pm}5.8$, $10{\pm}2.9$% at $10^{-10}$, $10^{-9}$, $10^{-8}$, $10^{-7}$, $10^{-5}$ M of SS, respectively (n=3∼6; $mean{\pm}SEM$). The steady-state activation and inactivation curves of $I_{Ba}$ as a function of membrane potentials were well fitted by a Boltzmann equation. Voltage of half-activation ($V_{0.5}$) was $-12{\pm}0.5$ mV in control and $-11{\pm}1.9$ mV in SS treated groups (respectively, n=5). The same values of half-inactivation were $-35{\pm}1.4$ mV and $-35{\pm}1.9$ mV (respectively, n=5). There was no significant difference in activation and inactivation kinetics of $I_{Ba}$ by SS. Inhibitory effect of SS on $I_{Ba}$ was significantly reduced by either dialysis of intracellular solution with $GDP_{\beta}S$, a non-hydrolysable G protein inhibitor, or pretreatment with pertussis toxin (PTX). SS also decreased contraction of guinea-pig gastric antral smooth muscle. In conclusion, SS decreases voltage-dependent L-type calcium channel current ($VDCC_L$) via PTXsensitive signaling pathways in guinea-pig antral circular myocytes.

Effects of Electrolytes and Drugs on the Inhibitory Junction Potentials Recorded from the Antrum of Guinea-pig Stomach (기니피그 유문동에서 기록되는 억제성 접합부 전압에 미치는 전해질과 약물의 효과)

  • Goo, Yong-Sook;Suh, Suk-Hyo;Lee, Suk-Ho;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 1990
  • The effects of electrolytes, adenosine, ATP, 5-hydroxytryptamine (5-HT, serotonin) and ketanserin on the inhibitory junction potentials (IJPs) were investigated to clarify the interactions of these drugs with the neurotransmitters released from non-adrenergic, non-cholinergic nerves in the antrum of guinea-pig stomach. Electrical responses of antral circular muscle cells were recorded intracellularly using glass capillary microelectrode filled with 3 M KCI. All experiments were performed in Tris-buffered Tyrode soluition which was aerated with 100% $O_{2}$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Inhibitory junction potential (IJP) was recorded in antral strip, while excitatory junction potential (EJP) was recorded in fundic strip. 2) IJP recorded in antral strip was not influenced by atropine $(10^{-6}\;M)$ and guanethidine $(5{\times}10^{-6})$. 3) The amplitude of IJP increased in high $Ca^{2+}$ solution, while that of IJP decreased in high $Mg^{2+}$ solution or by $Ca^{2+}$ antagonist (verapamil). Apamin, $Ca^{2+}$-activated $K^{+}$ channel blocker blocked IJP completely. 4) ATP and adenosine decreased the amplitude of IJP. 5) 5-HT decreased the amplitude of IJP with no change of the amplitude of slow waves, while ketanserin (5-HT type 2 blocker) decreased the amplitude of slow waves markedly with no change in that of IJP. From the above results, the following conclusions could be made. 1) IJP recorded in antral strip is resulted from neurotransmitters released from non-adrenergic, non-cholinergic nerves. 2) An increase in the concentration of external $Ca^{2+}$ enhances the release of neurotransmitters from non-adrenergic, non-cholinergic nerves which activate the $Ca^{2+}$-dependent $K^{+}$ channel.

  • PDF

Effect of $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the Spontaneous Contractions and Electrical Activities of Guinea-pig Stomach (기니피그 위 평활근의 자발적 수축과 전기적 활동에 대한 $Ca^{2+}$$Ca^{2+}$-길항제 영향)

  • Rhie, Sang-Ho;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.241-257
    • /
    • 1987
  • The effects of external $Ca^{2+}$ and $Ca^{2+}-antagonists$ on the spontaneous contractions and electrical activities were investigated in guinea-pig stomach in order to clarify the mechanism for the generation of slow waves. Electrical responses of circular smooth muscle cells were recorded using glass capillary microelectrodes filled with 3 M KCl. All experiments were performed in tris-buffered Tyrode solution which was aerated with 100% $O_2$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) The amplitude of spontaneous contractions was maximal at around 2-4 mM $Ca^{2+}$, whereas their frequency was inversely related with external $Ca^{2+}$ within the range of 0.5 to 16 mM $Ca^{2+}$. 2) Verapamil suppressed the amplitude of spontaneous contraction in a dose-dependent manner, while the frequency of spontaneous contractions was almost not changed over the whole concentration of verapamil $(0.01{\sim}5\;mg/l)$. 3) Manganese increased both the amplitude and the frequency of spontaneous contractions dose-dependently in low $Mn^{2+}$ (below 0.05 mM $Mn^{2+}$), while their amplitude and frequency were decreased in high $Mn^{2+}$ (above 0.1 mM $Mn^{2+}$). 4) The ampltude and maximum rate of rise of slow waves were incrased in high $Ca^{2+}$ solution. In $Ca^{2+}-free$ solution, the spontaneous contractions recorded simultaneously with slow waves ceased and tonic contraction ($Ca^{2+}-free$ contracture) was developed in parallel with membrane depolarization and the disappearance of slow waves. 5) Verapamil (1 mg/1) decreased the amplitude and maximum rate of rise of slow waves and it depolarized the membrane by about 6 mV, whereas the frequency of slow waves was not affected by verapamil. 6) Manganese showed different characteristic effects between low and high $Mn^{2+}$ on the slow waves: In low $Mn^{2+}$ (0.05 mM $Mn^{2+}$), the initial rapid increases and the subsequent gradual decreases in three parameters of slow waves (amplitude, rate of rise, and frequency of slow waves) till a new steady state were observed. However, in high $Mn^{2+}$ (0.5 mM $Mn^{2+}$) slow waves disappeared and membrane was depolarized. From the above results, the following conclusions could be made: 1) $Ca^{2+}$ is necessary for a generation of the slow waves, even though it is small amount. 2) Verapamil suppresses the spontaneous contractions of gastric antral strip by the decreases in amplitude and maximum rate of rise of slow waves, while this drug does not block the $Ca^{2+}-channel$ involved in the generation of slow waves. 3) Manganese has dual actions on the $Ca^{2+}-channels$; the $Ca^{2+}-channel$ involved in the generation of slow waves (or Na-Ca exchange system) or the channel for the generation of spike potentials are stimulated by a low concentration of $Mn^{2+}$, while both the $Ca^{2+}$. Channels are blocked by high concentration of $Mn^{2+}$.

  • PDF