• Title/Summary/Keyword: Antiwear properties

Search Result 19, Processing Time 0.021 seconds

Effects of Tribological Characteristics on Lubricants Properties (The 1st) (윤활유 성질이 마모특성에 미치는 영향(제1보))

  • 오성모;이봉구
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.57-62
    • /
    • 1998
  • When lubricants is used under severe running conditions, their tribological characteristics are very important. We have studied the lubricating oil viscosity, kinds of additives and their amounts, and lubricating oil temperatures were changed. In order to study the effect of oil temperature on the wear of the surface, the temperature of the oil was changed for the same sample. Moreover, the temperatures of three kinds of oils which have very different viscosities at room temperature, were varied between 6$0^{\circ}C$ and 115$^{\circ}C$ while the oil viscosity was unchanged. It was shown from the test results that surface wear is not greatly affected by the amount of ZnDTP (Zinc dialkyl dithio phosphate) antiwear agent, but EP (Extreme pressure) additives are less effective against wear than ZnDTP additives. The viscosity of lubricating oil and its temperature greatly affect the wear of the surface. Combining all the wear data with those of the surface strength, it was observed that the higher the load, the wider the scratching of wear, and also in the case of the same running load, the lower the wear, the longer the life of the surface strength.

Tribological Properties of Aqueous Solutions Composed of Aminated Olive Oil Derivative (수용성 아민화 올리브유 유도체의 트라이볼로지적 특성고찰)

  • Choi, Ung-Su;Lee, Sang-Soon
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.272-276
    • /
    • 2010
  • Aminated oilve oil derivative as the new organic disperse phases of the water soluble metal working fluid has been synthesized and tribological properties of the aqueous solutions composed of aminated olive oil derivative investigated using Four Ball Wear Tester and Falex EP Tester. The formulated aqueous solutions showed higher antiwear and extreme pressure properties and also lower friction coefficient. On the basis of the the results, water soluble aminated oilve oil derivative showed excellent tribological properties due to the polarizability of oleic acid derivative composed of majority part in oilve oil.

The Changes of Mechanical Properties of Used Oil in Gasoline Engine (가솔린 엔진오일의 사용에 따른 기계적 성질의 변화에 관한 연구)

  • 강석춘;신성철;김동길;노장섭
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.36-48
    • /
    • 1993
  • This study is concerned with the changes (deterioration) of the mechanical properties of used oil in the gasoline engine. The analysed properties of used oil were friction, antiwear, wear debris, load-carrying ability and the formation of surface film. From this study, it was found that the oil used in engine was deteriorated to increase the wear and fricion and decrease the load-carrying ability as the running distance of oil was increased. Also the main cause of deterioration was related to the formation of the protective film on the contact zone. When the film was composed with rich additives (sulfur), this could properly protect contact zone from the increase of wear and friction. But as oil was deteriorated, it could not form such a film and therefore the protective ability of sliding surface diminished.

Rheological, Stability and Antiwear Properties of Water-in-Oil Emulsion Hydraulic Fluids (Water-in-oil 에멀젼 압축유의 유동성, 안정성 및 내마모성에 관한 연구)

  • Shim, Joosup;Cho, Wonoh
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.48-54
    • /
    • 1996
  • 제철산업과 광산산업에서 난연성 압축유로써 Water-in-oil(W/O) 에멀젼의 사용이 점차 증가하고 있다. 이러한 관점에서, 기유의 점도, 물과 오일의 배합비율 및 음이온성 emulsifier의 농도 변화에 따른 W/O 에멀젼의 점도, 안정성 및 내마모성을 조사하였다. 에멀젼의 점도는 기유의 점도에 비례해서 증가하였으며 물의 배합비율에 따라 지수함수적으로 증가하였다. 에멀젼의 안정성은 에멀젼 점도와 대수함수 관계임을 보여주고 있다. 에멀젼 점도와 다른 요소와의 상관관계를 매우 복잡하며 이러한 상관관계를 해결하기 위해서는 더 많은 연구가 진행되어야 한다. 에멀젼의 점도는 에멀져의 내마모성에 거의 영향이 없으며 기유의 점도에 따라 영향을 받으며 물의 배합비가 너무 커지게 되면 마모에 심각한 나쁜 결과를 초래하였다.

Tribological Behavior of Lubricating Oil-Based Nanofluids Containing Ag and Carbon Nanoparticles (Ag 및 탄소 나노윤활유의 제조 및 윤활특성 평가)

  • Choi, Cheol;Jung, Mi-Hee;Choi, Young-Min;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.610-616
    • /
    • 2008
  • Oil-based nanofluids were prepared by dispersing Ag, graphite and carbon black nanoparticles in lubricating oil. Agglomerated nanoparticles were dispersed evenly with a high-speed bead mill and/or ultrasonic homogenizer, and the surfaces of the nanoparticles were modified simultaneously with several dispersants. Their tribological behaviors were evaluated with a pin-on-disk, disk-on-disk and four-ball EP and wear tester. It is obvious that the optimal combination of nanoparticles, surfactants and surface modification process is very important for the dispersity of nanofluids, and it eventually affects the tribological properties as a controlling factor. Results indicate that a relatively larger size and higher concentration of nanoparticles lead to better load-carrying capacity. In contrast, the use of a smaller size and lower concentration of particles is recommended for reducing the friction coefficient of lubricating oil. Moreover, nanofluids with mixed nanoparticles of Ag and graphite are more suitable for the improvement of load-carrying capacity and antiwear properties.

Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance (기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성)

  • Kim, Young-Seok;Lee, Ju-Dong;Lee, Man-Sig
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

The Study on Field Test of the New Formulated and Commercial Diesel Engine Oils (제조 디젤엔진 오일과 상업용 디젤엔진 오일의 실차시험 연구)

  • 김영운;정근우;강석춘
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • A diesel engine oil formulated in KRICT and a commercial diesel engine oil (API CG-4) were tested by car and their Kinematic Viscosity, TAN, TBN, metal content, additive depletion, anti-wear property and IR analysis were analyzed. From the research, both of the tested oils had almost the same properties f3r the change of TAN and TBN, but the change of Kinematic Viscosity of formulated oil was slightly higher than that of commercial oil. The iron content in the commercial oil increased rapidly from 7000 km while that of the formulated oil was still low. These results were confirmed by the anti-wear test with a 4-ball wear test machine for the each samples. Also, for the commercial oil, the depletion factor of the Zn-DTP which was added as an anti-wear property did not change any more after 7000 km. But, that of the formulated oil changed continuously to 8000 km, which means that the ability to prevent wear of the sliding pairs exists for the formulated oil. From the analysis results of oil properties obtained by field test, it was found that the commercial oil could be used only within 7000 km, but the formulated oil could be used more than 8000 km without severe wear of the sliding parts in the diesel engine.

  • PDF

A Study on the Influence of Ceramic Coating on Characteristics of Friction and Abrasion of Aluminum Alloy(7075 T6) Used in Mechanical Casting (세라믹 코팅이 기계 주조용 알루미늄합금(7075 T6)의 마찰ㆍ마모특성에 미치는 영향에 관한 연구)

  • Lyu, Sung-Ki;Jung, Kwang-Jo;Lu, Long
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.14-21
    • /
    • 2003
  • This study deals with the influence of ceramic coating on characteristics of friction and abrasion of aluminum allot(7075 T6) used in mechanical casting. In this research, frictional wear characteristic of ceramic coating materials such as $A1_2O_3$, $Si_3N_4$, SiC was investigated using aluminum alloy(7075 T6) and stainless 403 cast iron under room temperature and normal air pressure. The coating layer was observed using SEM. The conclusions are as follows: 1) Friction coefficients of $A1_2O_3$, SiC and $Si_3N_4$ are obtained 0.63 0.56 and 0.54 respectively. 2) Abrasion resistance of stainless 403 cast iron with $Si_3N_4$ is the best among the ceramic coating materials. 3) Abrasion mechanism of aluminum alloy(7075 T6) coaled with ceramic material and stainless 403 cast iron is caused by brittle fracture. 4) Coating the ceramic material on the aluminum alloy(7075 T6) can effectively increase the antiwear, impact properties, and corrosion resistance.

Synthesis and Antiwear Properties of Ammonium Dithiocarbamate-based Ionic Liquid (I) (암모니움 디티오카바메이트계 이온성 액체의 합성 및 내마모성능 (I))

  • Baek, Seung-Yeob;Kim, Nam-Kyun;Shin, Jihoon;Chung, Keunwo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.323-329
    • /
    • 2014
  • The friction-reducing properties of lubricants containing ionic liquids based on ammonium dithiocarbamate are studied. The ionic liquids are produced through the following two steps: the synthesis of sodium alkyl dithiocarbamates via the substitution reaction of dialkylamine and carbon disulfide and their subsequent conversion into ammonium dithiocarbamate-based ionic liquids through an ion-exchange reaction with a quaternary alkyl ammonium halide salt. The structures of the ionic liquids are characterized by NMR spectroscopy and Fourier transform infrared spectroscopy. The isolated yields of the ionic liquids, which are viscous and pale yellow, are approximately 92%. The Brookfield viscosities and pour points of the ionic liquids are determined. Further, their wear resistances are measured through the four-ball wear test and the Schwingung Reibung Ver-schleiss (oscillation, friction, wear) test. The wear scar diameter of the lubricants containing 1 wt of the quaternary alkyl ammonium dithiocarbamate-based ionic liquids (0.475-0.631 mm) is significantly lower than that of the base oil (0.825 mm), proving that the ammonium dithiocarbamate-based ionic liquids have good friction-reducing characteristics. However, these friction-reducing characteristics fade significantly after long-term storage, owing to the degradation of the ionic liquids.