• Title/Summary/Keyword: Antioxidant enzymes activities

Search Result 543, Processing Time 0.027 seconds

Protective Effects of Lotus Root (Nelumbo nucifera G.) Extract on Hepatic Injury Induced by Alcohol in Rats (알코올로 유발된 흰쥐의 간손상에 대한 연근 추출물의 간 보호효과)

  • Lee, Jae-Joon;Park, Se-Young;Lee, Yu-Mi;Lee, Myung-Yul
    • Food Science and Preservation
    • /
    • v.13 no.6
    • /
    • pp.774-782
    • /
    • 2006
  • This study investigated the hepatoprotective effects of an ethanol extract of lotus root (LRE) on alcohol-induced liver damage in rat. Sprague-Dawley rae weighing $100{\sim}150g$, were divided into 6 groups: basal diet group (BD), alcohol (35% 10 mL/kg/day) teated stoup (ET), LRE 200 mg/kg/day teated group (BD-LREL). LRE 400 mg/kg/day treated group (BD-LREH), LRE 200 mg/kg/day and alcohol treated group (ET-LREL), and LRE 400 3mg/kg/day and alcohol teated group (ET-LREH). After the administration, rats were sacrificed to get serum and liver to analyze antioxidant enzyme activity, glutathione and lipid peroxide contents. The body weight gain and feed efficiency ratio were decreased by alcohol administration, however, were gradually increased to a little lower level than the basal diet group by the combined administration of alcohol and LRE. The serum alanine aminotransferase (ALT), asparate aminotransferase (AST) and alkaline phosphatase (ALP) activities that were elevated by alcohol were significantly decreased by LRE administration. It was also observed that thiobarbituric acid reactive substances (TBARS) content, xanthine oxidase (XO), superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-Px) activities in liver that were increased by alcohol, were markedly decreased in the combined alcohol and LRE administered groups as compared with the alcohol administrated group. These effect of LRE within the alcohol groups were in a dose-dependent manner. The glutathione (GSH) content in liver was decreased by alcohol administration, however, increased after administering LRE. Teken together, these result suggest that ethanol extract of lotus root may have a possible protective effect on liver function in hepatotoxicity-induced rat by alcohol administration.

Antioxidative Activity and Lipid Composition from Different Part and Supplement of Codonopsis lanceolata in Rat (더덕 부위별, 첨가수준이 실험쥐의 항산화활성과 지질조성에 미치는 효과)

  • Oh, Hae-Sook;Won, Hyang-Rye
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.9
    • /
    • pp.1128-1133
    • /
    • 2007
  • This study was conducted to examine antioxidative activity and lipid composition from different parts and supplement flesh and skin of Codonopsis lanceolata in vivo. Forty six-week-old white Sprague Dawley rats were divided into 5 groups and fed with experimental diet for six weeks to measure antioxidant enzymes activities and lipid composition in blood and liver microsome. The activity of glutathione peroxidase in blood was high in all groups supplemented with Condonopsis lanceolata and the difference was observed in accordance with the supplemented part rather than the supplemented level. However, glutathione reductase activity and the content of malondialdehyde (MDA) in blood showed difference depending on the level of supplementation rather than the supplemented part. The content of liver MDA in all groups supplemented with Condonopsis lanceolata was lower than that in the control group. As the level of skin supplementation increased, an increase in glutathione peroxidase activity was also observed. Only in the group that 5% of Condonopsis lanceolata skin was supplemented, the glutathione reductase activity was higher than in the control group. Total cholesterol and LDL-cholesterol of blood in the group supplemented with Condonopsis lanceolata flesh or skin were significantly lower than those in control group. HDL-cholesterol in blood was high when the flesh of Condonopsis lanceolata was supplemented. Total cholesterol and triglyceride in liver of the group supplemented with Condonopsis lanceolata flesh or skin were significantly lower than those in control group. In summary, this animal test showed that the supplementation of Condonopsis lanceolata, flesh or skin, generally improved the antioxidative effect of diet and lipid composition.

Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells (치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과)

  • Lee, Young-Kyung;Kim, Chul Hwan;Jeong, Dae Won;Lee, Ki Won;Oh, Young Taek;Kim, Jeong Il;Jeong, Jin-Woo
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.565-573
    • /
    • 2022
  • Gingival inflammation is one of the main causes that can be related to various periodontal diseases. Human gingival fibroblast (HGF) is the major constituent in periodontal connective tissue and secretes various inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), upon lipopolysaccharide stimulation. This study is aimed at investigating the anti-inflammatory and antioxidative activities of Lotus Root extract (LRE) in Porphyromonas gingivalis derived lipopolysaccharide (LPS-PG)-stimulated HGF-1 cells. The concentration of NO and PGE2, as well as their responsible enzymes, inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), was analyzed by Griess reaction, ELISA, and western blot analysis. LPS-PG sharply elevated the production and protein expression of inflammatory mediators, which were significantly attenuated by LRE treatment in a dose-dependent manner. LRE treatment also suppressed activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88 (MyD88) and nuclear factor-κB (NF-κB) in LPS-PG-stimulated HGF-1 cells. In addition, one of phase II enzyme, NAD(P)H quinone dehydrogenase (NQO)-1, and its transcription factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), were significantly induced by LRE treatment. Consequently, these results suggest that LRE ameliorates LPS-PG-induced inflammatory responses by attenuating TLR4/MyD88-mediated NF-κB, and activating NQO-1/Nrf2 antioxidant response element signaling pathways in HGF-1 cells.