• 제목/요약/키워드: Antioxidant enzyme genes

검색결과 68건 처리시간 0.138초

Saccharomyces cerevisiae에서 이온화 방사선과 N-acetyl-L-cysteine 처리에 따른 세포 생존과 Superoxide Dismutase와 Catalase 유전자 발현 (Cell Survival and Expression of Superoxide Dismutase and Catalase Genes in Saccharomyces cerevisiae Treated with N-acetyl-L-cysteine and Ionizing Radiation)

  • 박지영;백동원;모하마드닐리;김진규
    • 환경생물
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 2011
  • NAC는 GSH의 전구물질로, thiol기를 포함하는 항산화제 중 하나로 잘 알려져 있으며, 방사선 조사 시 발생하는 생체 내 영향을 감소시켜 생체 손상의 방호 및 회복에 도움을 주는 방사선 방어제로 이용된다. S. cerevisiae에서 항산화제 NAC를 전처리 함에 따라 이온화 방사선 조사에 따른 효모의 세포사멸 방어효과 및 superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx)와 같은 항산화 효소들의 유전자 발현을 분석하여 NAC의 항산화적 효과를 확인하였다. 효모는 다양한 농도의 NAC 전처리 후 다양한 선량의 이온화 방사선에 조사되었으며, 세포생존율은 세포형성단위(CFU)를 계수해 측정되었고, 항산화 효소의 유전자 발현은 real-time PCR수행 후 분석하였다. 우선적으로 효모에 NAC 처리를 위한 적정농도를 확인하였는데, 35 mM 이상의 NAC 농도에서 효모세포의 성장이 억제 되었다. NAC 전처리는 감마선 조사에 의한 세포사멸을 방어하지 않았으며, 100 Gy 방사선 조사는 항산화 효소들의 유전자 발현을 유도하였다. NAC 전처리 후 항산화 효소들의 유전자 발현은NAC의 농도 증가에 따라 감소하였다. 이러한 결과로,NAC의 높은 농도(35 mM 이상)는 효모세포의 성장을 저해하며, NAC는 이온화 방사선 조사에 따른 세포사멸을 방어할 수 없으나, 생체 내에서 활성산소종을 제거 하여 세포를 보호하는 유용한 항산화제임을 알 수 있었다.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

  • Seo, Ji-Yeon;Lim, Soon-Sung;Park, Ji-A;Lim, Ji-Sun;Kim, Hyo-Jung;Kang, Hui-Jung;YoonPark, Jung-Han;Kim, Jong-Sang
    • Nutrition Research and Practice
    • /
    • 제4권2호
    • /
    • pp.93-98
    • /
    • 2010
  • Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by $CCl_4$ treatment to the control level. Hepatic injury induced by $CCl_4$ was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by $CCl_4$.

비스페놀 A에 대한 기수산 물벼룩의 항산화 시스템의 변화 (Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A)

  • 유제원;차주선;김혜리;표진우;이영미
    • 환경생물
    • /
    • 제37권1호
    • /
    • pp.72-81
    • /
    • 2019
  • Bisphenol A (BPA)는 대표적인 내분비계장애물질로 수서생물의 성장, 발생, 그리고 생식에 유해한 영향을 주는 것으로 알려져 있다. 본 연구는 기수산 물벼룩(Diaphanosoma celebensis)에서 48시간 BPA 노출 후 산화적 스트레스 반응을 조사하기 위하여 qRT-PCR을 이용한 항산화 유전자 발현 변화, 항산화 효소 활성, 총 단백질 함량 분석을 수행하였다. $3mg\;L^{-1}$의 BPA에 48시간 노출된 D. celebensis에서 모든 항산화 유전자(Cu/Zn-SOD, Mn-SOD, CAT)의 발현량이 유의하게 증가하였다. 특히 세 종류의 GST isoforms (GST-kappa, GST-mu, GST-theta)는 가장 낮은 농도인 $0.12mg\;L^{-1}$ BPA에 48시간 노출된 실험군에서도 유의하게 증가하였으며, GST-mu의 발현양이 상대적으로 가장 높게 나타났다. SOD 활성은 BPA 농도에 의존적으로 유의하게 증가하였으며, 총 단백질 함량은 BPA 노출에 대해 감소되는 양상을 보였다. 이러한 결과는 BPA가 D. celebensis에서 산화적 스트레스를 유발하였고, 이 과정에서 이들 항산화 유전자가 생물방어기전으로 참여한다는 것을 의미한다. 본 연구는 BPA가 해양생물에 미치는 영향에 대한 분자적 기전을 이해하는 데 도움이 될 것이다.

칼슘과 마그네슘이 조절된 해양심층수가 신장세포에서 항산화에 미치는 영향 (Effects of calcium and magnesium-balanced deep sea water on antioxidation in kidney cells)

  • 조소민;남자인;박건희;김병구;정귀화;허병석;김지연
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.165-170
    • /
    • 2021
  • 본 연구에서는 미네랄이 함유된 해양심층수(DSW)가 신장 기능에 미치는 항산화 효과를 세포 모델을 사용하여 확인하였다. DSW 샘플은 최적의 칼슘/마그네슘 비율을 결정하기 위한 목적으로, 각기 다른 칼슘 및 마그네슘 비율을 가진 4가지 샘플-미량 미네랄(TM), 고 마그네슘(HM), 고 마그네슘 저염(HMLS) 및 고 마그네슘 고 칼슘(HMHC)-로 준비되었다. 신장 세포주 HEK293를 2시간 동안 NaCl로 처리하여 ROS를 유도한 후, 마그네슘과 칼슘 등의 미네랄이 서로 다른 비율로 용해된 물로 처리하여 ROS 농도와 항산화 효소 활성 및 단백질을 측정하였다. 물 샘플 중 HMLS는 ROS에 대한 세포에 가장 많은 보호효과를 나타냈다. 세포 내 글루타티온 함량은 HMLS 그룹과 HMHC 그룹에서 가장 높았다. 반면, TM과 HMHC는 항산화 유전자의 mRNA 발현에서 대조군과 유사한 경향을 보였다. 이러한 결과는 DSW가 과도한 나트륨 섭취로 인한 신장의 산화 스트레스를 예방하는 데 도움이 될 수 있음을 시사한다. 또한 ROS 농도와 항산화 마커 측정 결과를 종합하여 볼 때 HMLS와 HMHC가 신장 세포 모델에서 우수한 항산화 효과를 가진 DSW 샘플이라고 판단할 수 있다.

Effects of fermented soybean meal with Bacillus velezensis, Lactobacillus spp. or their combination on broiler performance, gut antioxidant activity and microflora

  • Tsai, C.F.;Lin, L.J.;Wang, C.H.;Tsai, C.S.;Chang, S.C.;Lee, T.T.
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1892-1903
    • /
    • 2022
  • Objective: A series of experiment were conducted to evaluate the effects of replacing a part of soybean meal (SBM) at 6% of broiler diets with fermented soybean meal (FSBM) obtained by single or two-stage fermentation by measuring growth performance, antioxidant activity in the jejunum and distal intestinal microflora. Methods: Soybean meal samples were prepared by single-stage fermentation using Bacillus velezensis (Bv) (FSBMB), or Lactobacillus spp. (as commercial control) (FSBML). Additional SBM sample was prepared by two-stage fermentation using Bv and subsequently using Lactobacillus brevis ATCC 367 (Lb) (FSBMB+L). Enzyme activity, chemical composition, trichloroethanoic acid-nitrogen solubility index (TCA-NSI) and antioxidant activity were measured. Then, in an in vivo study, 320 Ross308 broilers were divided into four groups with ad libitum supply of feed and water. Four groups were fed either a corn-soybean meal diet (SBM), or one of fermented SBM diets (FSBMB+L, FSBMB, and FSBML). Growth, serum characteristics, microflora, and the mRNA expression of selected genes were measured. Results: Compared to SBM, FSBMB+L contained lower galacto-oligosaccharide, allergic protein, and trypsin inhibitor, and higher TCA-NSI by about three times (p<0.05). Reducing power and 1,1-diphenyl-2-picrylhydrazyl free radical scavenging ability correlated positively with the TCA-NSI content in FSBM. Growth performances were not significantly different among four groups. In jejunum of 35-day-old broilers, partial replacement of SBM by FSBMB+L increased the activity of superoxide dismutase and catalase (CAT), and the FSBMB group had the highest catalase activity (p<0.05). Partial replacement of SBM by FSBM increased relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and peptide transporter 1 (PepT1) (p<0.05); however, FSBMB+L increased CAT mRNA level to 5 times of the control (p<0.05). Conclusion: Using Bv- and Lb-processed SBM through two-stage fermentation to partially replace 6% of diets will improve the gut's antioxidant activity under commercial breeding in broilers.

Protective Effects of Standardized Siegesbeckia glabrescens Extract and Its Active Compound Kirenol against UVB-Induced Photoaging through Inhibition of MAPK/NF-κB Pathways

  • Kim, Jongwook;Kim, Mi-Bo;Yun, Jun Gon;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.242-250
    • /
    • 2017
  • Anti-photoaging effects of standardized Siegesbeckia glabrescens extract (SGE) and its major active compound kirenol were investigated using Hs68 human dermal fibroblasts and hairless mice, respectively. UVB-irradiated hairless mice that received oral SGE (600 mg/kg/day) showed reduced wrinkle formation and skinfold thickness compared with the UVB-irradiated control. Furthermore, SGE treatment increased the mRNA levels of collagen synthesis genes (COL1A1, COL3A1, COL4A1, and COL7A1) and activated antioxidant enzyme (catalase), while suppressing matrix metalloproteinase (MMP-2, -3, -9, and -13) expression. In Hs68 fibroblasts, kirenol also significantly suppressed MMP expression while increasing the expression of COL1A1, COL3A1, and COL7A1. Collectively, our data demonstrate that both SGE and kirenol attenuated UVB-induced photoaging in hairless mice and fibroblasts through inhibition of the mitogen-activated protein kinases and nuclear factor kappa B pathways, suggesting that SGE has potential to serve as a natural anti-photoaging nutraceutical.

Cancer Chemopreventive Effects of Korean Seaweed Extracts

  • Lee, Saet-Byoul;Lee, Joo-Young;Song, Dae-Geun;Pan, Cheol-Ho;Nho, Chu-Won;Kim, Min-Cheol;Lee, Eun-Ha;Jung, Sang-Hoon;Kim, Hyung-Seop;Kim, Yeong-Shik;Um, Byung-Hun
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.613-622
    • /
    • 2008
  • Cancer chemopreventive effects can be exerted through the induction of phase II detoxification enzymes and the inhibition of inflammatory responses. In this study, the cancer chemopreventive effects and anti-inflammatory responses of 30 seaweed extracts were examined. The extracts of Dictyota coriacea and Cutleria cylindrica exhibited the high chemoprevention index, having 4.36 and 4.66, respectively. They also activated antioxidant response element at $100\;{\mu}g/mL$ by about 3-fold while did not activate xenobiotic response element. Seven seaweed extracts, Ishige okamurae, Desmarestia ligulata, Desmarestia viridis, Dictyopteris divaricata, D. coriacea, Sargassum horneri, and Sargassum yezoense, showed significant inhibition on nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production in a dose-dependant manner in $5-20\;{\mu}g/mL$. These seaweed extracts could be used as food materials for cancer chemoprevention. D. coriacea could contain potential chemopreventive agents not only that regulate genes via an ARE-dependent mechanism but also prevent the inflammation through inhibition of NO and $PGE_2$ production.

Induction of P3NS1 Myeloma Cell Death and Cell Cycle Arrest by Simvastatin and/or γ-Radiation

  • Abdelrahman, Ibrahim Y;Helwa, Reham;Elkashef, Hausein;Hassan, Nagwa HA
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7103-7110
    • /
    • 2015
  • The present study was conducted to investigate the effect of ${\gamma}$-radiation alone or combined with a cytotoxic drug, simvastatin, on viability and cell cycling of a myeloma cell line. P3NS1 myeloma cells were treated with the selected dose of simvastatin ($0.1{\mu}M/l$) 24 hours prior to ${\gamma}$-irradiation (0.25, 0.5 and 1Gy). The cell viability, induction of apoptosis, cell death, cell cycling, generation of ROS, and expression of P53, Bax, Bcl2, caspase3, PARP1 and Fas genes were estimated. The results indicated that simvastatin ($0.1{\mu}M/l$) treatment for 24 hours prior to ${\gamma}$-irradiation increased cell death to 37.5% as compared to 4.81% by radiation (0.5Gy) alone. It was found that simvastatin treatment before irradiation caused arrest of cells in G0/G1 and G2/M phases as assessed using flow cytometry. Interestingly, simvastatin treatment of P3NS1 cells increased the intracellular ROS production and decreased antioxidant enzyme activity with increased P53, Bax and Caspase3 gene expression while that of Bcl2 was decreased. Consequently, our results indicated that pre-treatment with simvastatin increased radio sensitivity of myeloma tumor cells in addition to apoptotic effects through an intrinsic mitochondrial pathway.

Effects of Pogonatherum paniceum (Lamk) Hack extract on anti-mitochondrial DNA mediated inflammation by attenuating Tlr9 expression in LPS-induced macrophages

  • Rungthip Thongboontho;Kanoktip Petcharat;Narongsuk Munkong;Chakkraphong Khonthun;Atirada Boondech;Kanokkarn Phromnoi;Arthid Thim-uam
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.827-843
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Mitochondrial DNA leakage leads to inflammatory responses via endosome activation. This study aims to evaluate whether the perennial grass water extract (Pogonatherum panicum) ameliorate mitochondrial DNA (mtDNA) leakage. MATERIALS/METHODS: The major bioactive constituents of P. paniceum (PPW) were investigated by high-performance liquid chromatography, after which their antioxidant activities were assessed. In addition, RAW 264.7 macrophages were stimulated with lipopolysaccharide, resulting in mitochondrial damage. Quantitative polymerase chain reaction and enzyme-linked immunosorbent assay were used to examine the gene expression and cytokines. RESULTS: Our results showed that PPW extract-treated activated cells significantly decrease reactive oxygen species and nitric oxide levels by reducing the p2phox and iNOS expression and lowering cytokine-encoding genes, including IL-6, TNF-α, IL-1β, PG-E2 and IFN-γ relative to the lipopolysaccharide (LPS)-activated macrophages. Furthermore, we observed that LPS enhanced the mtDNA leaked into the cytoplasm, increasing the transcription of Tlr9 and signaling both MyD88/Irf7-dependent interferon and MyD88/NF-κb p65-dependent inflammatory cytokine mRNA expression but which was alleviated in the presence of PPW extract. CONCLUSIONS: Our data show that PPW extract has antioxidant and anti-inflammatory activities by facilitating mtDNA leakage and lowering the Tlr9 expression and signaling activation.