• Title/Summary/Keyword: Antimicrobial resistant bacteria

Search Result 336, Processing Time 0.027 seconds

High-level mupirocin resistance in Gram-positive bacteria isolated from diseased companion animals

  • Sum, Samuth;Park, Hee-Myung;Oh, Jae Young
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • The purpose of this study was to investigate the high-level mupirocin resistance (HLMR) in Gram-positive bacteria isolated from companion animals. A total of 931 clinical specimens were collected from diseased pets. The detection of mupirocin-resistant bacteria and plasmid-mediated mupirocin resistance genes were evaluated by antimicrobial susceptibility tests, polymerase chain reactions, and sequencing analysis. Four-hundred and six (43.6%) bacteria were isolated and 17 (4.2%), including 14 staphylococci and 3 Corynebacterium were high-level mupirocin-resistant (MICs, ≥ 1,024 ug/mL) harboring mupA. Six staphylococci of HLMR strains had plasmid-mediated mupA-IS257 flanking regions. The results show that HLMR bacteria could spread in veterinary medicine in the near future.

Antimicrobial Resistance and the Presence of Virulence Genes in Escherichia coli Strains Isolated from Ruditapes philippinarum in Gomso Bay, Korea (곰소만 해역의 바지락(Ruditapes philippinarum)에서 분리한 대장균 (Escherichia coli)의 항균제 내성 및 병원성 유전자의 보유성)

  • Kim, Tae-Ok;Eom, In-Seon;Park, Kwang-Ho;Park, Kwon-Sam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.800-806
    • /
    • 2016
  • In total, 151 Escherichia coli isolates from Ruditapes philippinarum in Gomso Bay were analyzed for their susceptibility to 18 different antimicrobial agents and for genes associated with virulence. For virulence genes, each strain of the isolates was positive for the enterotoxigenic E. coli (ETEC)-specific heat-stable toxin (estA), enteroinvasive E. coli (EIEC)-specific invasion-associated locus (iaa) gene and enteropathogenic E. coli (EPEC)-specific attaching and effacing (eae) gene. According to a disk diffusion susceptibility test, resistance to ampicillin was most prevalent (23.2%), followed by resistance to amoxicillin (22.5%), ticarcillin (20.5%), tetracycline (18.5%), nalidixic acid (12.6%), ciprofloxacin (10.6%), streptomycin (9.9%), and chloramphenicol (6.6%). More than 35.8% of the isolates were resistant to at least one antimicrobial agent, and 19.9% were resistant to four or more classes of antimicrobials; these were consequently defined as multidrug resistant. Minimum inhibitory concentration (MIC) ranges for the antimicrobial resistance of the 15 different antimicrobial agents of 54 E. coli strains were confirmed by varying the concentrations from $32-2,048{\mu}g/mL$. Overall, these results not only provide novel insights into the necessity for seawater and R. philippinarum sanitation in Gomso Bay but they also help to reduce the risk of contamination by antimicrobial-resistant bacteria.

Drug Resistance Patterns of the Bacterial Strains Isolated from Rural Areas and an Urban General Hospital (무의촌균주(無醫村菌株) 및 병원균주(病院菌株)의 항균제(抗菌劑) 내성(耐性) 양상(樣相)에 관(關)한 연구(硏究))

  • Rhee, Kwang-Ho;Kim, Ik-Sang;Shin, Hee-Sup;Cha, Chang-Yong;Lee, Seung-Hoon;Chang, Woo-Hyun;Lim, Jung-Kyoo
    • The Journal of the Korean Society for Microbiology
    • /
    • v.15 no.1
    • /
    • pp.19-32
    • /
    • 1980
  • Besides the benefits of antimicrobial agents in the control of various infectious diseases, widespread and prolonged use of particular antimicrobial agents has brought about the increase of drug-resistant strains in a community and the profound changes in the pattern of infectious diseases. In Korea, there are some remote villages where no clinics and drug stores are available and the residents in those areas are assumed to have fewer chances to contact with antimicrobial agents. In the present study, the differences in susceptibilities to 14 antimicrobial agents between the isolates from rural areas(R) and Seoul National University Hospital(SNUH, H) were studied. The isolates and their numbers were Staphylococcus aureus, R;55, H;68), Enterococci(R;28, H;30), Escherichia coli(R;40, H;40), Enterobacter aerogenes(R;25, H;21) and Klebsiella pneunoniae(R;58, H;67). Minimal inhibitory concentrations(MIC's) of penicillin, ampicillin, carbenicillin, cephalexin, tetracycline, oxytetracyline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, erythromycin, troleandomycin and co-trimoxazole were determined by agar dilution method. I. Comparison of MIC's and resistant strain proportions between isolates from SNUH and rural areas. MIC's and/or resistant strain proportions of the isolates from SNUH were significantly higher than those of the isolates from rural areas in the cases of 1. S. aureus to doxycycline, streptomycin and kanamycin. 2. E. coli to penicillin, ampicillin, carbenicillin, tetracycline, oxytetracycline, doxycycline, minocycline, streptomycin, kanamycin, erythromycin and co-trimoxazole. 3. E. aerogences to carbenicillin, tetracycline, oxytetracycline, doxycycline, minocycline, streptomycin, kanamycin, genaamicin and co-trimoxazole. 4. K pneunoniae to penicillin, ampicillin, tetracycline, oxytetracycline, doxycycline, monocycline, streptomycin, kanamycine, gentamicin and co-trimoxazole. However, the mean MIC and resistant strain proportion of S. aureus to tetracycline were higher in isolates from rural areas than in those from SNUH and Enterococci showed no differences in susceptibilities to the antimicrobial agents between isolates from rural areas and from SNUH. Therefore, in general, differenes in susceptibility to these antimicrobial agents between the isolates from rural areas and SNUH were remarkably greater and broader in gram negative enteric bacteria. II. Multiple drug resistance pattern. Patterns and incidences of multiple drug resistance were studied with penicillin, ampicillin, tetracycline, cephalexin, gentamicin, streptomcin, kanamycin and co-trimoxazole in Enterococci, E. coli, E. aeroges and K. pneumoniae. There appeared significant differences in the incidence of multiply drug-resistant strains and multiple drug resistance patterns between the isolates from SNUH and rural areas in Enterococci, E. coli, E. aerogenes and K. pneumoniae. However, there was no difference in the incidence of multiply drug-resistant strains between isolates of S. aureus from SNUH and rural areas but the pattern of multiple resistance of the SNUH strains of S. aureus was diverse, while that of the rural strains was predominantly confined to penicillin-tetracycline combination. The incidence of multigly drug-resistant strains and diversity of their patterns were the highest in E. coli strains isolated from SNUH and there were no multiply drug resistant strrains in Enterococci and K. pneumoniae strains isolated from rural areas. The number of drug-resistance determinants was also different between the isolates from rural areas and SNUH. Most of the multiply drug-resistant strains of E. coli, E. aerogenes and K. pneumoniae isolated from SNUH were resistant to more than 3 kinds of antimicrobial agents, most frequently to ampicillin, tetracycline and streptomycin, while multiply drug-resistant strains from rural areas were resistant to 2 kinds of antimicrobial agents among ampicillin, tetracycline and streptomycin. With drug-resistant E. coli strains, resistance to tetracycline which was used most widely since 1951 was most frequently involved as a part of mutliple drug-resistance, followed by resistance to ampicillin and streptomycin. This strongly suggests that emergence of drug-restant strains in a community is directly dependent on the selective pressure exerted by the antimicrobial agent used. III. Cross resistance. Cross resistance of bacteria was studied among tetracycline penicillin, aminoglycoside and macrolide derivatives by analyzing correlation coefficients of sucseptibilities using the least square method. In this study, there were high correlations among the susceptibilities to related derivatives. It appears that the relatively low correlations in susceptibilities present in some cases are due to intrinsic resistance of E. aerogenes to penicillin, Enterococci to aminoglycoside and E. coli E. aerogenes and K. pneumoniae to macrolide derivatives.

  • PDF

Antimicrobial Activity of Mupirocin, Daptomycin, Linezolid, Quinupristin/Dalfopristin and Tigecycline against Vancomycin-Resistant Enterococci (VRE) from Clinical Isolates in Korea (1998 and 2005)

  • Lee, Do-Kyung;Kim, Yu-Na;Park, Kun-Sup;Yang, Jae-Wook;Kim, Kyung-Jae;Ha, Nam-Joo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.881-887
    • /
    • 2007
  • It is a hot clinical issue whether newly approved antimicrobial agents such as daptomycin, linezolid, quinupristin/dalfopristin (synercid) and tigecycline are active enough to be used for infections caused by vancomycin resistant bacteria. We performed susceptibility tests for mupirocin, which is in widespread clinical use in Korea, and four new antimicrobials, daptomycin, linezolid, quinupristin/dalfopristin and tigecycline, against vancomycin-resistant Enterococcus faecalis and Enterococcus faecium isolated from Korean patients in 1998 and 2005 to evaluate and compare the in vitro activity of these antimicrobials. Among these agents, quinupristin/dalfopristin, which is rarely used in hospitals in Korea, showed relatively high resistance to several vancomycin-resistant enterococci (VRE) isolated in 2005. Likewise, daptomycin, linezolid and tigecycline have not yet been in clinical use in Korea. However, our results showed that most of the 2005 VRE isolates were already resistant to linezolid and daptomycin (highest minimum inhibitory concentration (MIC) value >$100{\mu}g$/ml). Compared with the other four antimicrobial agents tested in this study, tigecycline generally showed the greatest activity against VRE. However, four strains of 2005 isolates exhibited resistance against tigecycline (MIC >$12.5{\mu}g$/ml). Almost all VRE were resistant to mupirocin, whereas all E. faecium isolated in 1998 were inhibited at concentrations between $0.8\sim1.6{\mu}g$/ml. In conclusion, resistances to these new antimicrobial agents were exhibited in most of VRE strains even though these new antibiotics have been rarely used in Korean hospitals.

Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach

  • Shin, Juyoun;Shin, Sun;Jung, Seung-Hyun;Park, Chulmin;Cho, Sung-Yeon;Lee, Dong-Gun;Chung, Yeun-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1481-1489
    • /
    • 2021
  • Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsis-causing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.

Characteristics of Pasteurella multocia isolated from pneumonic lung lesions of swine ; antimicrobial susceptibility, plasmid profile and distribution of toxA (돼지 폐렴병소로부터 분리한 Pasteurella multocida에 관한 연구 : 항균제 감수성, plasmid profile 및 toxA 유전자 분포)

  • Shin, Na-ri;Park, Joo-youn;Park, Yong-ho;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1091-1098
    • /
    • 1999
  • Antimicrobial susceptibility, plasmid profiles and distribution of toxA gene were investigated in Pasteurella multocida isolated from pneumonic lung lesions of swine. The bacteria were highly susceptible to norfloxacin, cabenicillin, enrofloxacin and chloramphenicol, but resistant to colistin, sulfamethoxawle/trimethoprime, bacitracin, streptomycin. Sixty percentage of the isolates was resistant more than 2 drugs used in this experiment and 21 strains (23.6%) were resistant more than 5 drugs. This phenomenon meant that they had highly multi-drugs resistance. In the analysis of plasmid profiles, nineteen strains (47.5%) of 40 P multocida isolates harbored plasmids, ranging from 53.3kb to 2.49kb in size and the plasmid profiles could be classified into 5 groups. However, there was no relationship between the size and the profile of plasmid and the resistance pattern of antimicrobial agents. Thirty strains of 39 P multocida isolates (77%) investigated by PCR harbored toxA gene. This result suggested involvement of the ToxA protein expressed from the gene in pneumonic pasteurellosis of swine.

  • PDF

Sclerotiorin: a Novel Azaphilone with Demonstrated Membrane Targeting and DNA Binding Activity against Methicillin-Resistant Staphylococcus aureus

  • Dasagrandhi, Chakradhar;Pandith, Anup;Imran, Khalid
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.429-438
    • /
    • 2020
  • The emergence of multi-drug resistant, pathogenic methicillin-resistant Staphylococcus aureus (MRSA) is a threat to global health and has created a need for novel functional therapeutic agents. In this study, we evaluated the underlying mechanisms of the anti-MRSA effect of an azaphilone pigment, sclerotiorin (SCL) from Penicillium sclerotiorum. The antimicrobial activity of SCL was evaluated using agar disc diffusion, broth microdilution, time-kill assays and biophysical studies. SCL exhibits selective activity against Gram positive bacteria including MRSA (range, MIC = 128-1028 ㎍/ml) and exhibited rapid bactericidal action against MRSA with a > 4 log reduction in colony forming units within three hours of administration. Biophysical studies, using fluorescent probes and laser or electron microscopy, demonstrated a SCL dose-dependent alternation in membrane potential (62.6 ± 5.0.4% inhibition) and integrity (> 95 ± 2.3%), and the release of UV260 absorbing materials within 60 min (up to 3.2 fold increase, p < 0.01) of exposure. Further, SCL localized to the cytoplasm and hydrolyzed plasmid DNA. While in vitro checkerboard studies revealed that SCL potentiated the antimicrobial activity of topical antimicrobials such as polymixin, neomycin, and bacitracin (Fractional Inhibitory Concentration Index range, 0.26-0.37). Taken together these results suggest that SCL targets the membrane and DNA of MRSA to facilitate its anti-MRSA antimicrobial effect.

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.

Identification of Lactobacillus ruminus SPM0211 Isolated from Healthy Koreans and Its Antimicrobial Activity against Some Pathogens

  • Yun Ji-Hee;Yim Dong-sool;Kang Jin-Yang;Kang Byung-Yong;Shin Eun-ah;Chung Myung-Jun;Kim Soo-Dong;Baek Dae-Heoun;Kim Kyungjae;Ha Nam-Joo
    • Archives of Pharmacal Research
    • /
    • v.28 no.6
    • /
    • pp.660-666
    • /
    • 2005
  • The intestinal microbiota are important to the host with regard to resistance they impart against bacterial infections and their involvement in mediating metabolic functions. Lactic acid producing bacteria such as Lactobacillus play an important physiological role in these matters. The aim of the present study was to isolate Lactobacillus sp. that inhibits enteric pathogens. Initially, 17 isolates from healthy Koreans were collected on Lactobacillus selective medium. Resistance of the isolates to antibiotics including rifampicin, streptomycin, clindamycin and vancomycin was measured. One of the isolate was identified as Lactobacillus ruminus on the basis of bacterial cell morphology, cultural characteristic and biochemical characteristics, 16S rRNA sequence analysis and PCR-RAPD. Antimicrobial activity of the bacterium against Vancomycin Intermediate Resistant Staphylococcus aureus (VISA) and Vancomycin-Resistant Enterococci (VRE) was measured. About $10^4$ cells of VISA or VRE were mixed with 1, 5, and 9 mL of L. ruminus SPM 0211 and the final volume was adjusted to 10 mL with brain heart infusion (BHI) broth. The cell suspension was incubated for 3, 6, 9, and 24 h, serially diluted and then plated on BHI agar plates. As numbers of L. ruminus SPM 0211 were increased, viable cell count of VISA and VRE decreased. The strongest antimicrobial activity of SPM 0211 was observed after 9 h incubation in any mixture, almost completely inhibiting the growth of these two bacteria. The results suggest that the freshly isolated L. ruminus SPM 0211 may be used as a pro-biotic microbe that prevents the colonization of enteric pathogens and can thereby promote good gastrointestinal health.

Prevalence and Antimicrobial Susceptibility of Erythromycin-Resistant Campylobacter jejuni and Campylobacter coli Isolated from Swine

  • Choi, Mi-Rai;Kim, Shin-Moo;Kim, Sang-Ha;Choi, Wan-Soo;Kim, Young-Kwon
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.152-159
    • /
    • 2012
  • Campylobacter species are known to the high optimum growth temperature ($42^{\circ}C$) and the cause of enteritis in people. Erythromycin has a curative effect for enteritis caused by the bacteria. However, the rate of erythromycin-resistant bacteria was not well known until recently in Korea. Swine are one of sources of the infection with a Campylobacter species which cause the symptom of a high temperature. In this study, we cultured rectum fecal specimens of 100 pigs in an area of Buan-gun, Jeonbuk Province during July 2009. As a result, the detection rate of C. jejuni and C. coli and the rate of erythromycin-resistant bacteria for the separated Campylobacter species on the condition of high temperature were investigated. The possession or not of hipO and glyA gene and ciprofloxacin-resistant gene gyrA was also reviewed with biochemical characteristics and PCR.