• 제목/요약/키워드: Antigenic potential

검색결과 63건 처리시간 0.025초

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • 제23권6호
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

The Anti-apoptotic Effect of Ghrelin on Restraint Stress-Induced Thymus Atrophy in Mice

  • Jun Ho Lee;Tae-Jin Kim;Jie Wan Kim;Jeong Seon Yoon;Hyuk Soon Kim;Kyung-Mi Lee
    • IMMUNE NETWORK
    • /
    • 제16권4호
    • /
    • pp.242-248
    • /
    • 2016
  • Thymic atrophy is a complication that results from exposure to many environmental stressors, disease treatments, and microbial challenges. Such acute stress-associated thymic loss can have a dramatic impact on the host's ability to replenish the necessary naïve T cell output to reconstitute the peripheral T cell numbers and repertoire to respond to new antigenic challenges. We have previously reported that treatment with the orexigenic hormone ghrelin results in an increase in the number and proliferation of thymocytes after dexamethasone challenge, suggesting a role for ghrelin in restraint stress-induced thymic involution and cell apoptosis and its potential use as a thymostimulatory agent. In an effort to understand how ghrelin suppresses thymic T cell apoptosis, we have examined the various signaling pathways induced by receptor-specific ghrelin stimulation using a restraint stress mouse model. In this model, stress-induced apoptosis in thymocytes was effectively blocked by ghrelin. Western blot analysis demonstrated that ghrelin prevents the cleavage of pro-apoptotic proteins such as Bim, Caspase-3, and PARP. In addition, ghrelin stimulation activates the Akt and Mitogen-activated protein kinases (MAPK) signaling pathways in a time/dose-dependent manner. Moreover, we also revealed the involvement of the FoxO3a pathway in the phosphorylation of Akt and ERK1/2. Together, these findings suggest that ghrelin inhibits apoptosis by modulating the stress-induced apoptotic signal pathway in the restraint-induced thymic apoptosis.

Inferring B-cell derived T-cell receptor induced multi-epitope-based vaccine candidate against enterovirus 71: a reverse vaccinology approach

  • Subrat Kumar Swain;Subhasmita Panda;Basanta Pravas Sahu;Soumya Ranjan Mahapatra;Jyotirmayee Dey;Rachita Sarangi;Namrata Misra
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권2호
    • /
    • pp.132-145
    • /
    • 2024
  • Purpose: Enterovirus 71, a pathogen that causes hand-foot and mouth disease (HFMD) is currently regarded as an increasing neurotropic virus in Asia and can cause severe complications in pediatric patients with blister-like sores or rashes on the hand, feet, and mouth. Notwithstanding the significant burden of the disease, no authorized vaccine is available. Previously identified attenuated and inactivated vaccines are worthless over time owing to changes in the viral genome. Materials and Methods: A novel vaccine construct using B-cell derived T-cell epitopes from the virulent polyprotein found the induction of possible immune response. In order to boost the immune system, a beta-defensin 1 preproprotein adjuvant with EAAAK linker was added at the N-terminal end of the vaccine sequence. Results: The immunogenicity of the designed, refined, and verified prospective three-dimensional-structure of the multi-epitope vaccine was found to be quite high, exhibiting non-allergenic and antigenic properties. The vaccine candidates bound to toll-like receptor 3 in a molecular docking analysis, and the efficacy of the potential vaccine to generate a strong immune response was assessed through in silico immunological simulation. Conclusion: Computational analysis has shown that the proposed multi-epitope vaccine is possibly safe for use in humans and can elicit an immune response.

유전자 재조합 Human Factor VIII(GC-γ AHF)의 안전성에 관한 연구 (Safety Evaluation of Recombinant Human Factor VIII(GC-γ AHF))

  • 김민영;손장원;신민기;배미옥;김현우;최진혁;김준성;문서현;김정현
    • Toxicological Research
    • /
    • 제18권1호
    • /
    • pp.87-98
    • /
    • 2002
  • This study was conducted to evaluate the safety of a recombinant human Factor VIII(GC-$\gamma$ AHF) manufactured by Korea Green Cross Company with different technology according to the Regulation of Korean Food and Drug Administration (l 998. 12. 3). In acute toxicity test, both genders of Sprague-Dawley rats and Beagle dogs were administered intravenously with GC-$\gamma$ AHF of three doses (3,125, 625 and 125 IU/kg), and single dose of 3,125 IU/kg, respectively. No dead animal and abnormal autopsy findings were found in Control and GC-$\gamma$ AHF treated group. Therefore, the 50% lethal dose ($LD_{50}$) of GC-$\gamma$ AHF was conidered to be higher than 3,125 IU/kg in rats and dogs. In the four weeks repeated intravenous toxicity study, GC-$\gamma$ AHF was administrated intravenosly to both genders of rats and dogs with 3 doses (500, 150, 50 IU/kg). There were neither dead animals nor significant changes of body weights during the experimental Period. In addition, no significant GC-$\gamma$ AHF related changes were found in clinical sign, urinalysis and other finding. Statistically changes were observed in hematological, biochemical and organ weight parameters of treated groups: however these changes were not dose dependent. No histopathological lesion were observed in both control and treated animals. Above data suggest that no observed adverse effect level of test materials in rats and dogs might be over 500 IU/kg/day in this study. In ocular irritation test, any injury on iris, conjunctiva and cornea in rabbits were not observed. The acute ocular irritation index (A.O.I.), mean ocular irritation index (M.O.I.) and Day-7 individual ocular irritation Index (I.O.I.) of GC-$\gamma$ AHF were 0. In the primary skin Irritation test, the primary irritation index (P.I.I.) oj GC-$\gamma$ AHF were 0. Therefore, the GC-$\gamma$ AHF is considered not to have the primary skin and eye toxicity in rabbits. In active systemic anaphylaxis (ASA) test, GC-$\gamma$ AHF and GC-$\gamma$ AHF emulsified with Freund's complete adjuvant (FCA) did not induce any symptom of anaphylactic shock in guinea pigs. In passive cutaneous anaphylxis (PCA) test, after sensitization with antisera of GC-$\gamma$ AHF sensitized mice, blue spots were observed on the hypodermis of back of rats, but diameter of each spot was smaller than 5 mm in each test groups except the positive control group. Based on the results of this study, GC-$\gamma$ AHF is not conidered to have any antigenic potential. In conclusion, at levels of up to 500 IU/kg, GC-$\gamma$ AHF did not produce treatment-related toxicity under the conditions of these acute-, four week repeated-toxicity, primary skin and eye toxicity, and antigenicity test.

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

살모넬라 C1 serogroup 특이 rfbM 유전자 증폭과 염기서열 분석 (DNA Sequence analysis and rfbM gene amplification using PCR for detect salmonella C1 serogroup)

  • 이성일;정석찬;문진산;박용호;이존화;김병수;백병걸
    • 대한수의학회지
    • /
    • 제36권1호
    • /
    • pp.109-118
    • /
    • 1996
  • The Salmonella rfb gene encoding for the biosynthesis of the oligosaccharide-repeating units of the O-antigenic determinants was cloned and sequenced. A set of nucleotide primers(a forward and reverse) was selected to target a defined region of the guanosine diphospho-mannose(GDP-Man) pyrophosphorylase synthase gene : rfbM of Salmonella C serogroup. The primer set was used to develop a PCR-based rapid and specific detection system for Salmonella C1 serogroup. Amplification bands of predicted size(1,422bp) were generated from 11 different Salmonella C1 isolates. The bands were verified to be specific for the C1 serogroup by Southern blot analysis using reference homologous DNA specificity was further confirmed by the lack of reactivity with heterologous DNA derived from non-salmonella members of the family enterobacteriaeceae. A specificity of 100% was deduced along with a very high sensitivity shown by a detection limit of 1fg of a purified DNA template. The isolated DNA sequence was found to be 99.8% homologous to S montevideo but the related primers amplified with the predicted band sizes with all the Salmonella C1 serogroups tested. It is concluded that the PCR protocol based on the rfbM gene from S cholerasuis is optimal fast and specific for the detection of Salmonella C1 serogroup and also the corresponding probe is suitable for rapid detection of all Salmonella C1 serogroup DNA tested. This technology should facilitate the identification of contaminated pig products and for any other products contaminated with the Salmonalla C1 serogroup. The immediate impact of this developed method will be in the area of food safety of pig products with the potential prospect for adaptation to other food inspection technologies.

  • PDF

포도상구균 장내 C 형 변이독소 (SEC mutant)의 면역원성에 대한 연구 (Immunogenicity of staphylococcal enterotoxin C mutant antigen in mice and dairy cows)

  • 장병선;주이석;문진산;서근석;양수진;김소현;박용호
    • 대한수의학회지
    • /
    • 제41권2호
    • /
    • pp.177-188
    • /
    • 2001
  • Mastitis is one of the most significant cause of economic loss to the dairy industry. Especially, Staphylococcus aureus is a major contagious mastitis-causing pathogen in dairy cattle. Because of its high transmission rate and resistance to antibiotic therapy, staphylococcal mastitis presents a constant threat to the dairy industry. Staphylococcal enterotoxin C(SEC) produced by S aureus has been known as one of superantigens which are able to stimulate a large proportion of T lymphocytes independently of their antigenic specificity. In this experiment, we have conducted preliminary studies with mice and lactating cows to evaluate the immunogenicity and safety of the experimental vaccine consists of SEC mutant antigen on controlling the bovine mastitis associated with S aureus infections. The average value of somatic cell counts in quarter milk, isolation rate of S aureus were consistently decreased in SEC-SER vaccinated groups, whereas antibody titers were highly increased in SEC-SER vaccinated groups. Peripheral blood were also collected from the lactating cows to determine the proportion of leukocyte subpopulation associated with humoral immunity(HI) and cell mediated immunity(CMI). Proportion of leukocyte subpopulation expressing $BoCD2^+$(total T lymphocyte), $BoCD4^+$(T helper cell), $BoCD8^+$(T cytotoxic/suppressor cell) and NonT/NonB lymphocyte which are involved in CMI in SEC-SER vaccinated groups were decreased for the initial stage after first vaccination and then increased from ten weeks after first vaccination maintaining elevated level till 14 weeks after vaccination. In contrast, proportion of monocyte, MHC class II and B lymphocyte which are associated with the production of primary immune response in SEC-SER vaccinated groups were increased for the initial period and then decreased from ten weeks after first vaccination. We present evidence that vaccination of SEC-SER mutant antigen in lactating cows induced a significant proliferation of bovine T lymphocytes. These results suggest that SEC-SER mutant antigen used in this experiment might be one of potential immunogen in developing innovative vaccine against bovine IMI associated with S aureus. Additional challenge trials should be carried out to evaluate substantial protection against S aureus under the commercial farm conditions.

  • PDF

위암조직에서의 MAGE 유전자 발현 (Expression of MAGE in Gastric Cancer Tissues)

  • 최재형;이상호
    • Journal of Gastric Cancer
    • /
    • 제5권3호
    • /
    • pp.180-185
    • /
    • 2005
  • 목적: 정상세포와는 달리 종양세포에서만 비교적 특이적으로 발현되는 것을 tumor specific antigens이라고 하며 대표적인 것은 악성흑색종에서 처음 발견된 MAGE (melanoma antigen)가 있다. 위암조직에서의 MAGE subtype의 발현율은 약 $20{\sim}40%$ 정도로 알려져 있는데 진행성 위암은 전체적으로 예후가 불량하기 때문에 면역치료법과 같은 새로운 치료법을 고려해 볼 수 있다. 본 연구에서는 술 후에 얻은 정상 및 암 조직에서의 MAGE의 발현정도를 각 subtypes에 공통으로 존재하는 유전자를 Primers로 이용하여 조사하였다. 대상 및 방법: 내시경에서 진행성 암으로 진단된 후 수술받은 환자 53명을 대상으로 하였으며, 수술 중 절제된 위에서 정상조직과 암 조직을 얻어 $-70^{\circ}C$에서 보관하였다. 환자는 남자가 35명, 여자가 18명이었고 이들의 평균 연령은 57세였다. 보관된 조직에서 m-RNA를 분리한 후 RT-PCR과 nested PCR로 MAGE의 발현여부를 알아보았다. 기존에 알려진 MAGE gene의 subtypes에 공통으로 존재하는 oligonucleotides를 일차 primers로 이용하여 증폭시켰다. 그 후 또 다른 primers를 이용한 nested RT-PCR을 시행하여 각 조직에서의 발현율을 조사하였다. 결과: 위암환자에서 53예의 암조직 중 13개(24.5%)에서 MAGE gene이 양성으로 나왔고 정상조직에서는 MAGE gene이 모두 음성이었다. 위암의 조직형, ABO type, CEA, CA19-9와 cancer의 위치와는 상관관계가 없었다. 결론: 위암환자의 $20{\sim}30%$에서 MAGE gene이 발현되었으며, 이에 MAGE gene을 이용한 면역치료법의 시도가 필요 할 것으로 생각한다.

  • PDF

Huh7.5 간암 세포주의 HCV 항원제시에 의한 HCV 특이 T 림프구의 활성에 관한 연구 (The Activation of HCV-specific CD8 T Cells by HCV Peptide Pulsed Huh7.5 Cells)

  • 조효선
    • 미생물학회지
    • /
    • 제47권4호
    • /
    • pp.342-347
    • /
    • 2011
  • 인체의 바이러스 감염 방어기전에서 T 림프구는 중요한 역할을 한다. 하지만, 만성 C형 간염 바이러스의 일차적 복제장소인 간염 환자의 간에서 분리된 HCV 특이 T 림프구는 심각한 기능결핍을 보인다. 이러한 T 림프구 기능결핍의 이유로는 PD-1, CTLA-4 등 면역억제 물질의 발현, 또는 간에서 특이적으로 유도되는 면역내성(immune tolerance)이 있으나, 간세포(hepatocytes)와 HCV 특이 T 림프구의 상호작용에 대해서는 명확하게 확립되어 있지 않다. 따라서 본 연구에서는 HLA(human leukocyte antigen) A2+ 간암세포주(human hepatoma cell line; huh7.5)가 항원제시(antigen presentation)를 통해 효과적으로 HCV 특이 T 림프구를 활성화시키며 간암세포주(huh7.5) 표면의 PD-L (program death ligand) 1 발현은 T림프구의 활성을 감소시켜 면역조절의 가능성이 있음을 시사하였다. 또한, HCV 특이 tetramer 반응은 T 림프구의 과도한 활성으로 자기사멸(apoptosis)의 경로에 있음을 caspase 3 활성으로 확인하였고, 역시 PD-L1의 발현이 T 림프구를 자기사멸(apoptosis)로부터 구제하여 caspase 3 활성이 감소하는 것을 확인하였다. 이는 PD-L1과 간성(liver) T 림프구 표면의 PD-1 결합이 T 림프구의 자기사멸을 막고, 또한 그 기능을 회복시켜 만성 C형 간염 치료에 응용될 수 있음을 시사한다.