• 제목/요약/키워드: Anticyclonic Eddy

검색결과 24건 처리시간 0.022초

위성원격탐사를 이용한 동해 원산연안의 재발생 와동류 연구 (Study of a Recurring Anticyclonic Eddy off Wonsan Coast in Northern Korea Using Satellite Tracking Drifter, Satellite Ocean Color and Sea Surface Temperature Imagery)

  • 서영상;장이현;김정희
    • 대한원격탐사학회지
    • /
    • 제16권3호
    • /
    • pp.211-220
    • /
    • 2000
  • 위성자료를 이용하여 동해북부 원산 연근해역의 재발생 와동류에 대한 형태변동, 유속, 발생기작 등을 연구하였다. 1999년 1월 4일부터 3월 18일까지의 기간에 대한 ARGOS의 표류부이 자료(위치정보 및 수온), NOAA 위성의 AVHRR 자료(표면수온) 그리고 Orbview-2 위성의 SeaWiFS 자료(클로로필 a)를 이용하여 재발생 와동류의 수평공간 규모를 파악하였다. 또한 재발생 와동류의 기작과 변동원인을 규명하고자 속초와 울릉도에서의 풍향, 풍속자료, 묵호-울릉도간 해수면 차 값 및 해저지형과 와동류에 포획되어 있는 표류부이의 시.공간적 위치변동간의 상관정도를 파악하였다. 원산 연안해역에서의 와동류의 72일간 평균유속은 153 km/h (42 cm/sec)로 분석되었다. 이 와동류는 cold core, 시계방향의 회전, 직경 110 km의 수평공간을 가진 재발생 와동류로서 와동류의 중심은 위도 $39^{\circ}N$, 경도 $129^{\circ}E$로 분석되었다.

수치모형을 통한 함평만과 해제반도 주변해역의 조류 및 조석잔차류 분포 (Tidal and tide-induced residual currents around Hampyung Bay and Hajae Peninsula by numerical simulation)

  • 추효상
    • 수산해양기술연구
    • /
    • 제56권2호
    • /
    • pp.114-125
    • /
    • 2020
  • In order to understand the currents around Hampyung Bay and Haeje Peninsula, 2D numerical simulations for tidal currents and tide-induced residual currents were carried out. Dominant semidiurnal tidal currents have reversing form and flow NNE-SSW from northern Haeje Peninsula to Songi Island, E-S at northern Haeje Peninsula and NNW-SSE in Hampyung Bay. In flood, a part of currents from Imja Island~Nakwhol Island flow along the main stream flowing northeast at offshore region and the rest flow into Hampyung Bay flowing east along the northern coast of Haeje Peninsula. In ebb, currents from Hampyung Bay flow west along the northern coast of Haeje Peninsula and run together with the main stream flowing southeast at offshore region. The currents create an anticyclonic circulation in flood and a cyclonic circulation in ebb around Haeje Peninsula including Hampyung Bay. Tidal currents are accumulated on Doripo which located at the entrance of Hampyung Bay and show high current velocities. Tidal currents and tide induced residual currents are weak at the inside of Hampyung Bay which has narrow entrance, shallow water depth and wide intertidal zone. An anticyclonic eddy is formed around Gaksi Island as a result of tide induced residual currents. In northern coast of Haeje Peninsula, slow constant currents flow east. It is expected that a gradual change of sediment and an increase of flushing time for suspended materials are carried by tidal currents occurring in Hampyung Bay.

Transportation and Deposition of Modern Sediments in the Southern Yellow Sea

  • Shi, Xuefa;Chen, Zhihua;Cheng, Zhenbo;Cai, Deling;Bu, Wenrui;Wang, Kunshan;Wei, Jianwei;Yi, Hi-Il
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.57-71
    • /
    • 2004
  • Based on the data obtained under the China-Korea joint project (1997-2001) and historic observations, the distribution, transportation and sedimentation of sediment in the southern Yellow Sea (SYS) are discussed, and the controversial formation mechanism of muddy sediments is also explored. The sediment transport trend analysis indicates that the net transport direction of sediment in the central SYS (a fine-grained sediment deposited area) points to $123.4^{\circ}E,\;35.1^{\circ}N$, which is a possible sedimentation center in the central SYS. The sediment transport pattern is verified by the distribution of total suspended matter (TSM) concentration and ${\delta}^{13}C$ values of particulate organic carbon (POC), the latter indicates that the bottom water plays a more important role than the surface water in transporting the terrigenous material to the central deep-water area of the SYS, and the Yellow Sea circulation is an important control factor for the sediment transport pattern in the SYS. The carbon isotope signals of organic matter in sediments indicate that the Shandong subaqueous delta has high sedimentation rate and the deposited sediments originate mainly from the modern Yellow River. The terrigenous sediments in deep-water area of the SYS originate mainly from the old Yellow River and the modern Yellow River, and only a small portion originates from the modern Yangtze River. The analytical results of TSM and stable carbon isotopes are further confirmed by another independent tracer of sediment source, polycyclic aromatic hydrocarbons (PAHs). Five light mineral provinces in the SYS can be identified and they indicate inhomogeneity in sources and sedimentary environment. The modern shelf sedimentary processes in the SYS are controlled by shelf dynamic factors. The muddy depositional systems are produced in the shelf low-energy environments, which are controlled by some meso-scale cyclonic eddies (cold eddies) in the central SYS and the area southwest of the Cheju Island. On the contrary, an anticyclonic muddy depositional system (warm eddy sediment) appears in the southeast of the SYS (the area northwest of the Cheju Island). In this study, we give the cyclonic and anticyclonic eddy sedimentation patterns.

온산공단 부근의 해양오염물질 이동 (TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX)

  • 장선덕;이종섭;한경화
    • 한국수산과학회지
    • /
    • 제13권4호
    • /
    • pp.151-162
    • /
    • 1980
  • 온산만내에서는 대조시 조류가 우세한 편이지만 (0.1 kt), 소조시의 표층류는 매우 불규칙하며(0.07 kt), 취송류와 지형성 소용돌이의 영향을 크게 받는다. 대조시 만북부에서는 썰물 때 동류하고 밀물 때 서류한다. 만남부에서는 밀물은 서북서류하고 철물은 동북동류이다. 만외에서는 조류가 우세하여 밀물 때 남-남남서류하고 썰물 때 북-북북동류한다. 최대유속은 $1\~1.1kt$로 관측되었다. 소조시의 항류는 북북동 14.3cm/sec였다. 우봉갑 남쪽 만입부에는 밀물갈때나 썰물갈 때 지름 약 1km미만의 시계방향 소용돌이가 존재하여 해수의 정체성이 비교적 강한편이다. 겨울의 취송류는 대체로 남류하며 최대유속은 약 0.1kt에 달한다. 온산만내에서 점원방출한 염료는 바람에 의해 변형되면서 주로 조류에 따라 만구쪽으로 이동, 분산하였고, 방출 3시간후의 평균확산계수는 $4.4\times10^4cm^2/sec$ 였다. 만외 만입부 시계방향의 환류내에서는 이보다 다소 낮은 값을 보였다.

  • PDF

수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견 (First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider)

  • 박종진
    • 한국해양학회지:바다
    • /
    • 제24권2호
    • /
    • pp.332-350
    • /
    • 2019
  • 2017년 8월 7일부터 25일까지 수중글라이더를 활용하여 $37.9^{\circ}N$ 위도 라인를 따라 동경 $129.0^{\circ}E{\sim}131.3^{\circ}E$ 사이를 왕복하는 단면 관측을 수행하였다. 해당 경로는 국립수산과학원 정기선박 관측라인 중 106 라인을 따른 것으로 이 경로를 따라 약 18일간 운용하였으며 위치 유지 모드로 동작했던 시간을 제외하고 총 440 km를 비행하였고, 그동안 고해상도 수온 및 염분의 공간 단면을 관측하였다. 본 관측 해역은 약 0.8 m/s의 강한 유속을 갖는 동한난류가 북상하고 있는 상황이었음에도 불구하고, 해당 수중글라이더는 지정된 경로에서부터 RMS 거리 400 m 이내를 벗어나지 않고 정확하게 106 라인을 따라 비행하였다. 본 관측에서 얻어진 고해상도 물성 단면 구조를 국립수산과학원 정선 관측 자료와 비교함으로써 해양환경에 지대한 영향을 끼치는 전선역이나 소용돌이와 같은 현상을 관측하기 위해서 고해상도 관측이 얼마나 중요한지 확인할 수 있었다. 이러한 수중글라이더 관측을 통해 이제까지 발견하지 못했던 새로운 소용돌이를 발견할 수 있었다. 이 소용돌이는 수평폭이 10~13 km, 수직폭은 200 m 가량되는 렌즈 형태를 가지고 있으며 시계방향으로 회전하는 아중규모 중층성 소용돌이(submesoscale intrathermocline eddy)다. 수온약층 내 혹은 직하부에 존재하면서 아중규모의 렌즈형태의 구조를 갖는 이러한 중층성 소용돌이는 동해에서 처음 발견되었기 때문에 Korea intrathermocline eddy(Keddy)로 명명하였다. 이 Keddy는 다음과 같은 전형적인 중층성 소용돌이(intrathermocline eddy)의 특징을 가지고 있다. Keddy는 수온약층 하부인 수심 약 170 m, 즉 중층에서 유속최대값을 갖는 특징이 있고, 따라서 해표면에는 해당 지오포텐셜 구조가 드러나지 않는 2차 순압성 구조를 가지고 있다. 또한 중앙부의 성층화가 주변보다 약하고, 수평크기가 1차 순압성 로스비 변형반경과 유사하며, 로스비 수가 0.7로 1에 근접한다.

Volume Transport on the Texas-Louisiana Continental Shelf

  • Cho Kwang-Woo
    • Fisheries and Aquatic Sciences
    • /
    • 제1권1호
    • /
    • pp.48-62
    • /
    • 1998
  • Seasonal volume transport on the Texas-Louisiana continental shelf is investigated in terms of objectively fitted transport streamfunction fields based on the current meter data of the Texas­Louisiana Shelf Circulation and Transport Processes Study. Adopted here for the objective mapping is a method employing a two-dimensional truncated Fourier representation of the streamfunction over a domain, with the amplitudes determined by least square fit of the observation. The fitting was done with depth-averaged flow rather than depth-integrated flow to reduce the root-mean-square error. The fitting process filters out $11\%$ of the kinetic energy in the monthly mean transport fields. The shelf-wide pattern of streamfunction fields is similar to that of near-surface velocity fields over the region. The nearshore transport, about 0.1 to 0.3 Sv $(1 Sv= 10^6\;m^3/sec)$, is well correlated with the seasonal signal of along-shelf wind stress. The spring transport is weak compared to other seasons in the inner shelf region. The transport along the shelf break is large and variable. In the southwestern shelf break, transport amounts up to 4.7 Sv, which is associated with the activities of the encroaching of energetic anticyclonic eddies originated in Loop Current of the eastern Gulf of Mexico. The first empirical orthogonal function (EOF) of streamfunction variability contains $67.3\%$ of the variance and shows a simple, shelf-wide, along-shelf pattern of transport. The amplitude evolution of the first EOF is highly correlated (correlation coefficient: 0.88) with the evolution of the along-shelf wind stress. This provides strong evidence that the large portion of seasonal variation of the shelf transport is wind-forced. The second EOF contains $23.7\%$ of the variance and shows eddy activities at the southwestern shelf break. The correlation coefficient between the amplitudes of the second EOF and wind stress is 0.42. We assume that this mode is coupled a periodic inner shelf process with a non-periodic eddy process on the shelf break. The third EOF (accounting for $7.2\% of the variance) shows several cell structures near the shelf break associated with the variability of the Loop Current Eddies. The amplitude time series of the third EOF show little correlation with the along-shelf wind.

  • PDF

Eddy-Resolving Simulations for the Asian Marginal Seas and Kuroshio Using Nonlinear Terrain-Following Coordinate Model

  • Song, Y.-Tony;Tang, Tao
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.169-177
    • /
    • 2002
  • An eddy-resolving free-surface primitive-equation model with nonlinear terrain-following coordinates is established to study the exchange of water masses among the Asian marginal seas and their adjacent waters. A curvilinear coordinate system is used to generate the horizontal grid with a variable resolution for the regional oceans from $5^{\circ}$S to $45^{\circ}$N and $100^{\circ}$E to $155^{\circ}$E. The higher resolution region has about a 10 km by 10 km grid covering the complex geometry of the coastal marginal seas, while the lower resolution region has about a 30 km by 30 km grid covering the eastern Pacific. The model is initialized by the Levitus annual climitology and forced by the monthly mean air-sea fluxes of momentum, heat, and freshwater derived from the Comprehensive Ocean-Atmosphere Data Set. High-resolution and low-viscosity are identified as the key factors for a better representation of the exchange of waters through narrow straits and passages between the marginal seas and their adjacent waters. The dynamics of the loop currents and eddies in the South China Sea and Celebes Sea are examined in detail. It has found that the anticyclonic loop and detached eddies from the Kuroshio through the Luzon Strait play an important role in transporting warm and salty water into the South China Sea, while the cyclonic circulation of the Mindanao Current in the Celebes Sea plays a role in contributing cold water to the Indonesian throughflow. The deep undercurrent of the western Pacific is shown to provide fresher water to the South China Sea and Celebes Sea. These modeling results suggest that the exchange processes via the narrow straits and passages are of fundamental importance to the maintenance of water masses for the marginal sea region.

여자만 서수도 해역의 조류 및 조석평균류 특성 (Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea)

  • 추효상
    • 수산해양기술연구
    • /
    • 제55권3호
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성 (The Surface fCO2 Distribution of the Western North Pacific in Summer 2002)

  • 최상화;김동선;심정희;민홍식
    • Ocean and Polar Research
    • /
    • 제28권4호
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

The Records of Origin and Transport of Sediments From the Past to the Present in the Yellow Sea

  • Yi, Hi-Il;Chun, Jong-Hwa;Shin, Im-C.;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • Journal of the korean society of oceanography
    • /
    • 제39권1호
    • /
    • pp.96-106
    • /
    • 2004
  • A total of 116 surface sediment samples were obtained on the Yellow Sea and analyzed for grain size and geochemical elements in order to interpret the present sediment transportation. Thirty-nine cores and 3,070 line-km shallow seismic profiles are analyzed for sedimentary records of Yellow Sea in the past. Results show that the boundary of sediment transport between Korean side and Chinese side is about between $123^{\circ}E$ and $124^{\circ}E$. The similar result is produced from Shi et al. (in this publication). Two cyclonic patterns of surface sediments are recognized in the northeastern and southwestern Yellow Sea, while the strong front zone of the mud patch and sandy sediments are found in the southeastern Yellow Sea (the southwestern part of Korean coasts). The formation of fine-particle sediment packages, called for Northwest Mudbelt Deposit (NWMD), Hucksan Mudbelt Deposit (HSMD) and Jeju Mudbelt Deposit (JJMD), are resulted from eddies (gyres) of water circulations in the Yellow Sea. NWMD has been formed by cyclonic (anticlockwise) eddy. NWMD is composed of thick, homogeneous, relatively semi-consolidated gray clay-dominated deposit. On the other hand, HSMD and JJMD are formed by anticyclonic (clockwise) eddies. They are thick, homogeneous, organic-rich gray, silt-dominated deposit. Both core and surface sediments show that the middle zone across Chinese and Korean side contains bimodal frequency of grain-size distribution, indicating that two different transport mechanisms exist. These mud packages are surrounded by sand deposits from both Korea and China seas, indicating that Yellow Sea, which is the shallow sea and epicontinental shelf, is formed mostly by sand deposits including relict sands. The seismic profiles show such as small erosional/non-depositional channels, sand-ridges and sand-waves, Pleistocene-channelfilled deposits, a series of channels in the N-S major channel system, and thick Holocene sediment package, indicating that more complex sedimentary history exists in the Yellow Sea.