• Title/Summary/Keyword: Anticancer effects

Search Result 1,206, Processing Time 0.026 seconds

Anticancer activity and potential mechanisms of 1C, a ginseng saponin derivative, on prostate cancer cells

  • Wang, Xu De;Su, Guang Yue;Zhao, Chen;Qu, Fan Zhi;Wang, Peng;Zhao, Yu Qing
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.133-143
    • /
    • 2018
  • Background: AD-2 (20(R)-dammarane-3b, 12b, 20, 25-tetrol; 25-OH-PPD) is a ginsenoside and isolated from Panax ginseng, showing anticancer activity against extensive human cancer cell lines. In this study, effects and mechanisms of 1C ((20R)-3b-O-(L-alanyl)-dammarane-12b, 20, 25-triol), a modified version of AD-2, were evaluated for its development as a novel anticancer drug. Methods: MTT assay was performed to evaluate cell cytotoxic activity. Cell cycle and levels of reactive oxygen species (ROS) were determined using flow cytometry analysis. Western blotting was employed to analyze signaling pathways. Results: 1C concentration-dependently reduces prostate cancer cell viability without affecting normal human gastric epithelial cell line-1 viability. In LNCaP prostate cancer cells, 1C triggered apoptosis via Bcl-2 family-mediated mitochondria pathway, downregulated expression of mouse double minute 2, upregulated expression of p53 and stimulated ROS production. ROS scavenger, N-acetylcysteine, can attenuate 1C-induced apoptosis. 1C also inhibited the proliferation of LNCaP cells through inhibition on $Wnt/{\beta}-catenin$ signaling pathway. Conclusion: 1C shows obvious anticancer activity based on inducing cell apoptosis by Bcl-2 family-mediated mitochondria pathway and ROS production, inhibiting $Wnt/{\beta}-catenin$ signaling pathway. These findings demonstrate that 1C may provide leads as a potential agent for cancer therapy.

Evaluation of Antioxidant and Anticancer Activity of Steam Extract from The Bamboo Species

  • Kim, Ji-Su;Lee, Hyung Chul;Jo, Jong-Soo;Jung, Ji Young;Ha, Yeong Lea;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.543-554
    • /
    • 2014
  • Natural plant extract has been the subject of intense research aiming in elucidating the underlying mechanisms of their chemopreventive effects upon various forms of human cancers. The objective of our study was to evaluate the natural antioxidants and anticancer agent potential of Phyllostachys. The chemical composition of steam extract from Phyllostachys was carried out using GC-MS. The steam extract of Phyllostachys was dominated by monoterpenes (62.96% - 71.36%) and sesquiterpenes (23.58% - 33.13%) as the main compounds. The antioxidant activities of the steam extract was determined using a DPPH scavenging and hydrogen peroxide scavenging activity test systems. Furthermore, the amounts of total phenolics in steam extract were determined spectrometrically The steam extract of P. pubescens and P. bambusoides were presented the high activity (69.4% and 64.0%, respectively.). The steam extract from Pyllostachys species showed a hydrogen peroxide scavenging activity of approximately 50.4% - 54.6% when compared to that of the standard gallic acid. The anticancer activities of steam extract were determined using a MTT assay. Assessment of the cytotoxic effect of the steam extract on PC-3 cells showed that the P. bambusoides (20.85%) and P. pubescens (20.41%) were superior in induced cytotoxicity compared with the steam extract of P. nigra var. henonis (1.15%). Findings from this study indicated that steam extract of P. bambusoides and P. pubescens possessed potential as medicinal drug especially in prostate cancer treatment.

Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces

  • Park, Jae Gwang;Kang, Wie-Soo;Park, Kyung Tae;Park, Dong Jun;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.304-308
    • /
    • 2016
  • Background: Joboksansam, Korean bird wild ginseng, is an artificially cultivated wild ginseng germinated from bird feces. Although numerous pharmacologic activities of wild ginsengs have been reported, the beneficial effect of joboksansam in cancer has not been elucidated. In this study, we investigated the in vivo and in vitro anticancer activities of joboksansam powder. Methods: To evaluate the in vivo anticancer activity of joboksansam, we established a xenograft mouse model bearing RMA cell-derived cancer. Direct cytotoxicity induced by joboksansam powder was also investigated in vitro using (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT) assay. The inhibitory activity of this powder on the activation of cell survival signaling involving Akt and Src was examined with immunoblot analysis. Results: Joboksansam powder displayed strong inhibitory activity against the increased tumor size, increased weight of total body and cancer tissues, and mortality of tumor-bearing mice. Joboksansam powder also suppressed the activation of survival regulatory enzymes Akt and Src, as assessed by phosphorylation levels in the immunoblot analysis of tumor tissues. Interestingly, the viability of RMA cells in vitro was directly decreased by joboksansam treatment. Conclusion: Overall, our results strongly suggest that joboksansam powder has the potential to protect against cancer generation by direct cytotoxic effects on cancer cells resulting from suppression of cell survival signaling.

Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies

  • Park, Jun Yeon;Choi, Pilju;Kim, Ho-kyong;Kang, Ki Sung;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • v.40 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Background: Ginseng, which is widely used in functional foods and as an herbal medicine, has been reported to reduce the proliferation of prostate cancer cells by mechanisms that are not yet fully understood. Methods: This study was designed to investigate the changes in ginsenoside content in ginseng after treatment with a microwave-irradiation thermal process and to verify the anticancer effects of the extracts. To confirm the anticancer effect of microwave-irradiated processed ginseng (MG), it was tested in three human prostate cancer cell lines (DU145, LNCaP, and PC-3 cells). Involvements of apoptosis and autophagy were assessed using Western blotting. Results: After microwave treatment, the content of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd in the extracts decreased, whereas the content of ginsenosides 20(S)-Rg3, 20(R)-Rg3, Rk1, and Rg5 increased. Antiproliferation results for the human cancer cell lines treated with ginseng extracts indicate that PC-3 cells treated with MG showed the highest activity with an half maximal inhibitory concentration of $48{\mu}g/mL$. We also showed that MG suppresses the growth of human prostate cancer cell xenografts in athymic nude mice as an in vivo model. This growth suppression by MG is associated with the inductions of cell death and autophagy. Conclusion: Therefore, heat processing by microwave irradiation is a useful method to enhance the anticancer effect of ginseng by increasing the content of ginsenosides Rg3, Rg5, and Rk1.

Antioxidant and Anticancer Effects of Fermentation Vinegars with Phellinus linteus, Inonotus obliquus, and Pleurotus ostreatus (상황버섯, 차가버섯, 느타리버섯 발효식초의 항산화와 항암활성 효과)

  • Chung, Bong-Hwan;Seo, Hun-Seok;Kim, Hong-Sig;Woo, Sun-Hee;Cho, Yong-Gu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.113-117
    • /
    • 2010
  • The antioxidant and anticancer activities of Phellinus linteus, Inonotus obliquus, and Pleurotus ostreatus according to extraction methods were measured. The contents of polyphenolic compounds were higher in fermented extracts than those in water extracts. The contents were 192.4mg/100 $m{\ell}$ for Inonotus obliquus vinegar, 186.9 mg/100 $m{\ell}$ for Phellinus linteus vinegar, and 156.5 mg/100 $m{\ell}$ for Pleurotus ostreatus vinegar, respectively. EDA(electron donating ability) in Phellinus linteus that was highest among mushrooms was 83.9% in the water extract and 96.8% in the fermented extract. The growth of stomach cancer cells, SNU-719 was inhibited 62.4%, 65.5%, and 53.0% by Phellinus linteus vinegar, Inonotus obliquus vinegar, and Pleurotus ostreatus vinegar, respectively and also the growth of liver cancer cells, Hep3B was inhibited 67.1%, 68.3%, and 57.6% by Phellinus linteus vinegar, Inonotus obliquus vinegar, and Pleurotus ostreatus vinegar, while the growth of normal cell, DC2.4 was not affected. Even though Phellinus linteus and Inonotus obliquus showed higher inhibition in cancer cell growth, Pleurotus ostreatus can be efficiently used for antioxidant and anticancer activities due to their cheap price in the market.

Methanol extracts of Asarum sieboldii Miq. induces apoptosis via the caspase pathway in human FaDu hypopharynx squamous carcinoma cells

  • Lee, Seul Ah;Park, Bo-Ram;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.85-93
    • /
    • 2021
  • Asarum sieboldii Miq. (Aristolochiaceae) is a perennial herbaceous plant and has been used as traditional medicine for treating diseases, cold, fever, phlegm, allergies, chronic gastritis, and acute toothaches. Also, it has various biological activities, such as antiallergic, antiinflammatory, antinociceptive, and antifungal. However, the anticancer effect of A. sieboldii have been rarely reported, except anticancer effect on lung cancer cell (A549) of water extracts of A. sieboldii. This study investigated the anticancer activity of methanol extracts of A. sieboldii (MeAS) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. MeAS inhibited FaDu cells grown dose-dependently without affecting normal cells (L929), as determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and live and dead assay. In addition, concentration of MeAS without cytotoxicity (0.05 and 0.1 mg/mL) inhibited migration and colony formation. Moreover, MeAS treatment significantly induced apoptosis through the proteolytic cleavage of caspase-3, -7, -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by fluorescence-activated cell sorting analysis, 4'6-diamidino-2-phenylindole stain, and western blotting. Altogether, these results suggest that MeAS exhibits strong anticancer effects by suppressing the growth of oral cancer cells and the migration and colony formation via caspase- and mitochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, MeAS can serve as a natural chemotherapeutic for human oral cancer.

Bispecific Antibody-Bound T Cells as a Novel Anticancer Immunotherapy

  • Cho, Jaewon;Tae, Nara;Ahn, Jae-Hee;Chang, Sun-Young;Ko, Hyun-Jeong;Kim, Dae Hee
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2022
  • Chimeric antigen receptor T (CAR-T) cell therapy is one of the promising anticancer treatments. It shows a high overall response rate with complete response to blood cancer. However, there is a limitation to solid tumor treatment. Additionally, this currently approved therapy exhibits side effects such as cytokine release syndrome and neurotoxicity. Alternatively, bispecific antibody is an innovative therapeutic tool that simultaneously engages specific immune cells to disease-related target cells. Since programmed death ligand 1 (PD-L1) is an immune checkpoint molecule highly expressed in some cancer cells, in the current study, we generated αCD3xαPD-L1 bispecific antibody (BiTE) which can engage T cells to PD-L1+ cancer cells. We observed that the BiTE-bound OT-1 T cells effectively killed cancer cells in vitro and in vivo. They substantially increased the recruitment of effector memory CD8+ T cells having CD8+CD44+CD62Llow phenotype in tumor. Interestingly, we also observed that BiTE-bound polyclonal T cells showed highly efficacious tumor killing activity in vivo in comparison with the direct intravenous treatment of bispecific antibody, suggesting that PD-L1-directed migration and engagement of activated T cells might increase cancer cell killing. Additionally, BiTE-bound CAR-T cells which targets human Her-2/neu exhibited enhanced killing effect on Her-2-expressing cancer cells in vivo, suggesting that this could be a novel therapeutic regimen. Collectively, our results suggested that engaging activated T cells with cancer cells using αCD3xαPD-L1 BiTE could be an innovative next generation anticancer therapy which exerts simultaneous inhibitory functions on PD-L1 as well as increasing the infiltration of activated T cells having effector memory phenotype in tumor site.

Effects of Korean Red Ginseng extract on busulfan-induced dysfunction of the male reproductive system

  • Jung, Seok-Won;Kim, Hyeon-Joong;Lee, Byung-Hwan;Choi, Sun-Hye;Kim, Hyun-Sook;Choi, Yang-Kyu;Kim, Joon Yong;Kim, Eun-Soo;Hwang, Sung-Hee;Lim, Kwang Yong;Kim, Hyoung-Chun;Jang, Minhee;Park, Seong Kyu;Cho, Ik-Hyun;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.243-249
    • /
    • 2015
  • Background: Anticancer agents induce a variety of adverse effects when administered to cancer patients. Busulfan is a known antileukemia agent. When administered for treatment of leukemia in young patients, busulfan could cause damage to the male reproductive system as one of its adverse effects, resulting in sterility. Methods: We investigated the effects of Korean Red Ginseng extract (KRGE) on busulfan-induced damage and/or dysfunction of the male reproductive system. Results: We found that administration of busulfan to mice: decreased testis weight; caused testicular histological damage; reduced the total number of sperm, sperm motility, serum testosterone concentration; and eventually, litter size. Preadministration of KRGE partially attenuated various busulfan-induced damages to the male reproductive system. These results indicate that KRGE has a protective effect against busulfan-induced damage to the male reproduction system. Conclusion: The present study shows a possibility that KRGE could be applied as a useful agent to prevent or protect the male reproductive system from the adverse side effects induced by administration of anticancer agents such as busulfan.