• 제목/요약/키워드: Antibiotic resistance genes

검색결과 219건 처리시간 0.022초

Analysis of antibiotic resistance genes in pig feces during the weaning transition using whole metagenome shotgun sequencing

  • Gi Beom Keum;Eun Sol Kim;Jinho Cho;Minho Song;Kwang Kyo Oh;Jae Hyoung Cho;Sheena Kim;Hyeri Kim;Jinok Kwak;Hyunok Doo;Sriniwas Pandey;Hyeun Bum Kim;Ju-Hoon Lee
    • Journal of Animal Science and Technology
    • /
    • 제65권1호
    • /
    • pp.175-182
    • /
    • 2023
  • Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.

Relationship between biofilm formation and the antimicrobial resistance in the Staphylococcus spp. isolated from animal and air

  • Seo, Yeon-Soo;Lee, Deog Young;Kang, Mi Lan;Lee, Won Jung;Yoo, Han Sang
    • 대한수의학회지
    • /
    • 제49권3호
    • /
    • pp.231-236
    • /
    • 2009
  • Biofilm has been described as a barrier, which produced by microorganisms to survive and protect themselves against various environments, like antibiotic agents. Staphylococcus spp. is a common cause of nosocomial and environmental infection. Thirty-six and thirty-five Staphylococci were isolated from animals and air, respectively. Based on the biofilm forming ability of the bacterium reported in our previous report, relationship between biofilm formation and antibiotic-resistance was investigated in this study. Regarding antibiotics susceptibility, cefazolin was the most effective agent to the bacteria. Strong biofilm-forming Staphylococcus spp. isolates might have a higher antibiotic resistance than weak biofilm isolates regardless of the presence of antibiotic resistance genes (p < 0.05). This result suggested that the chemical complexity of the biofilm might increase the antibiotic resistance due to the decrease of antibiotic diffusion into cells through the extensive matrix.

프로바이오틱스 Enterococcus faecium CKDB003의 항생제 내성 및 안전성 평가 (Antibiotic Resistance and Safety Assessment of Enterococcus faecium CKDB003 for Using as Probiotics)

  • 김한준;강순아
    • 한국식품영양학회지
    • /
    • 제33권3호
    • /
    • pp.223-236
    • /
    • 2020
  • In this study, a safety evaluation was conducted to confirm if the Enterococcus faecium CKDB003 strain obtained by selection from a mixed fermentation of fruit and milk is suitable for use as a probiotic. The MIC value for the 10 antibiotics specified in the EFSA guidance was below the acceptable cut-off value. The antibiotic resistance genes aac(6')-li, eatAv, and msr(C) exist by whole genome sequencing, but are in the chromosome and not in the plasmid, thus confirming that there is no possibility of transmission to other microorganisms. It was confirmed that cytolysin (cylA, cylB, cylI, cylL-l, cylL-s, cylM, cylR1, cylR2), aggregation substance (asa1, asp1), collagen adhesion (ace), enterococcal surface protein (esp), endocarditis antigen (efaA), hyaluronidase (hyl) and gelatinase (gelE) were not present in the genome by examining the genes of factors related to virulence. Also, the biochemical analysis showed no toxic enzyme activities, and no virulence genes were detected by the PCR method. Thus, the E. faecium CKDB003 strain can be safely used as a health functional food probiotic, based on the results of the safety assessment.

Prevalence, Serotype Diversity, Genotype and Antibiotic Resistance of Listeria monocytogenes Isolated from Carcasses and Human in Korea

  • Oh, Hyemin;Kim, Sejeong;Lee, Soomin;Lee, Heeyoung;Ha, Jimyeong;Lee, Jeeyeon;Choi, Yukyung;Choi, Kyoung-Hee;Yoon, Yohan
    • 한국축산식품학회지
    • /
    • 제38권5호
    • /
    • pp.851-865
    • /
    • 2018
  • This study investigated the prevalence of Listeria monocytogenes in slaughterhouses, and determined serovars and genotypes, and antibiotic resistance of the isolates obtained from slaughterhouses and humans in Korea. Two hundred ninety samples were collected from feces (n=136), carcasses [n=140 (cattle: n=61, swine: n=79)], and washing water (n=14) in nine slaughterhouses. Eleven human isolates were obtained from hospitals and the Korea Center for Disease Control and Prevention. Listeria monocytogenes was enriched and identified, using polymerase chain reaction (PCR) and 16S rRNA sequencing. Serovars and presence of virulence genes were determined, and genetic correlations among the isolates were evaluated by the restriction digest patterns of AscI. Antibiotic resistance of L. monocytogenes isolates were examined against 12 different antibiotics. Of 290 slaughterhouse samples, 15 (5.17%) carcass samples were L. monocytogenes positive. Most L. monocytogenes isolates possessed all the virulence genes, while polymorphisms in the actA gene were found between carcass and human isolates. Serovars 1/2a (33.3%) and 1/2b (46.7%) were the most frequent in carcass isolates. Genetic correlations among the isolates from carcass and clinical isolates were grouped within serotypes, but there were low geographical correlations. Most L. monocytogenes isolates were antibiotic resistant, and some strains showed resistance to more than four antibiotics. These results indicate that L. monocytogenes are isolated from carcass and human in Korea, and they showed high risk serotypes and antibiotic resistance. Therefore, intensive attentions are necessary to be aware for the risk of L. monocytogenes in Korea.

개의 외이도에서 분리한 포도상구균의 항생제 내성 및 병독성 유전자 (Antimicrobial resistance and virulence factors in staphylococci isolated from canine otitis externa)

  • 조재근;이정우;김정옥;김정미
    • 한국동물위생학회지
    • /
    • 제45권3호
    • /
    • pp.171-180
    • /
    • 2022
  • The aim of this study was to investigate the prevalence of antimicrobial resistance and virulence factors in staphylococci isolated from canine otitis externa. A total 295 causative microorganisms were isolated. The most common isolated species were Staphylococcus (S) pseudintermedius (94 isolates) followed by Pseudomonas aeruginosa (60 isolates), S. schleiferi (25 isolates), Escherichia coli (23 isolates) and Proteus mirabilis (20 isolates). Staphylococci isolates were showed high resistance to penicillin (78.6%), erythromycin (55.9%), tetracycline (52.4%), clindamycin (51.7%) and ciprofloxacin (42.8%). Of the 145 staphylococci isolates, 49 (33.8%) methicillin-resistant staphylococci (MRS) were observed, distributed among S. pseudintermedius (n=34), S. schleiferi (n=6), S. epidermis (n=4), S. hominis (n=2), S. aureus, S. caprae and S. saprophyticus (n=1, respectively). Forty-three (87.8%) of 49 MRS and 10 (10.4%) of 96 methicillin-susceptibility staphylococci harbored mecA gene. About 80% of MRS were multidrug-resistant with resistance to at least one antibiotic in three or more antibiotic classes. Resistance genes blaZ (93/114, 81.5%), ermB (35/81, 43.2%), ermC (3/81, 3.7%), aacA-aphD (50/54, 92.5%), tetM (69/76, 90.7%) and tetK (6/76, 7.8%) were detected among resistant isolates. Virulence factors genes lukF and lukS were found in 100%(145/145) and 43.4%(63/145), respectively. Genes encoding ermA, eta, etb and tsst were not detected. To the best of our knowledge, this is the first study which investigated for the presence of genes encoding antimicrobial resistance and staphylococcal toxins in staphylococci isolated from canine otitis externa. A continuous monitoring and surveillance program to prevent antimicrobial resistance in companion animals is demanded.

중환자실의 임상검체로부터 분리된 Methicillin 내성 Staphylococcus aureus의 독소유전자형과 항생제내성의 상관관계 (The Correlation between Toxin Genotype and Antibiotic Resistance in Methicillin Resistant Staphylococcus aureus Isolated from Clinical Specimen of Intensive Care Unit)

  • 박철;성치남
    • 대한임상검사과학회지
    • /
    • 제48권3호
    • /
    • pp.202-209
    • /
    • 2016
  • 본 연구는 methicillin-resistant Staphylococcus aureus(MRSA)로부터, 독소 유전자형과 항생제 내성의 상관 관계를 결정하는 것을 목표로 하였다. 2014년 1월~12월까지 전남 순천의 한 병원 중환자실의 임상검체 2,664건에서 얻어진 MRSA 52균주를 분리하였다. 유전자들이 암호화하고 있는 mecA, 장독소(staphylococcal enterotoxins; sea, seb, sec, seg, seh, sei, sej), 독성 쇼크 증상독소-1 (toxic shock syndrome toxin-1; tst-1), 표피박탈성독소(exfoliative toxin; eta, etb), 백혈구 용해 독소(Panton-Valentine leukocidin; pvl)를 특이적 프라이머를 이용한 multiplex PCR로 증폭 검출 하였다. 독소 유전자 seg와 sei 유전자가 각각 40균주(76.9%)로 가장 많은 보유율을 나타냈으며 다음으로 tst 34균주(65.4%) 순으로 검출 되었으며 eta, etb, sea, sed, see, seh, sej와 pvl 유전자들은 검출 되지 않았다. 2개 이상의 독소 유전자를 동시에 보유한 조합의 MRSA는 40균주(76.9%) 였는데 5개 유전자(seb, sec, seg, sei, tst)를 동시 보유한 조합이 28균주(53.8%)로 가장 많은 분포를 보였으며 다음으로 seg, sei 유전자 동시 보유 조합으로 6균주(11.5%)에서 나타났다. 유전자들 간의 동시 보유율은 72.5~100%로서 특정한 독소 유전자 seb, sec, seg, sei와 tst 유전자간의 상관성이 높게 나타났다. 특정 다수의 독소유전자(seb, sec, seg, sei, tst)를 동시에 보유한 균주들이 개별적 독소 유전자를 보유한 균주(seb, sec, tst)와의 항생제 내성의 상관성은 ciprofloxacin, clindamycin, erythromycin 항생제에 100% 내성을 보임으로서 공통적으로 포함된 seb, sec, tst 유전자와 이 항생제의 내성과는 밀접한 연관이 있음을 알았다.

Prevalence of chloramphenicol-resistant gene in Escherichia coli from water sources in aquaculture farms and rivers of Kuching, Northwestern Borneo

  • Leong, Sui Sien;Lihan, Samuel;Toh, Seng Chiew
    • Fisheries and Aquatic Sciences
    • /
    • 제25권4호
    • /
    • pp.202-213
    • /
    • 2022
  • Antibiotic resistant Escherichia coli cases are increasing high especially in Southeast Asia. Illegal use of the antibiotic in the aquaculture farming may become the culprit of the outbreak and spread into environmental source. A study was conducted to: 1) detect the chloramphenicol (CAL)-resistant gene in E. coli isolated from three aquaculture farms and six rivers of northwestern Borneo and 2) investigate the correlation between cat gene with five common antibiotics used. Isolation of E. coli was done on Eosin methylene blue agar and characterized using indole, methyl red, Voges-Proskauer, citrate tests. E. coli isolates were subsequently tested for their susceptibility to five antibiotics commonly used in aqua-farming. The CAL-resistant E. coli were further analyzed for the presence of resistant genes (cat I, cat II, cat III, cat IV) using multiplex polymerase chain reaction. 42 bacterial colonies were isolated from a total of 80 individual water samples, 34 of which were identified as E. coli. Result showed 85.3% of the E. coli isolates were resistant to amoxicillin, 35.3% were resistant to tetracycline, 29.4% were resistant to CAL, 17.6% were resistant to nitrofurantoin and 8.8% were resistant to nalidixic acid. All of the 10 CAL resistant E. coli isolateswere detected with cat II genes; five isolates detected with cat IV genes; three isolates detected with cat III genes; and another two detected with cat I genes. Pearson correlation coefficient shows highly significant relationship between resistance pattern of CAL with amoxicillin; and CAL with tetracycline. Our findings provide the supplementary information of the CAL resistance gene distribution, thereby improving our understanding of the potential risk of antibiotic resistance underlying within this microbial ecosystem.

Characterisation of Phenotypic and Genotypic Antibiotic Resistance Profile of Enterococci from Cheeses in Turkey

  • Kurekci, Cemil;Onen, Sevda Pehlivanlar;Yipel, Mustafa;Aslantas, Ozkan;Gundogdu, Aycan
    • 한국축산식품학회지
    • /
    • 제36권3호
    • /
    • pp.352-358
    • /
    • 2016
  • The aim of this study was to determine the prevalence of enterococci in cheese samples and to characterize their antimicrobial resistance profiles as well as the associated resistance genes. A total of 139 enterococci were isolated from 99 cheese samples, the isolates were identified as E. faecalis (61.2%), E. faecium (15.1%), E. gallinarum (12.9%), E. durans (5.0%), E. casseliflavis (2.9%) and E. avium (2.9%). The most frequent antimicrobial resistance observed in enterococci isolates was to lincomycin (88.5%), followed by kanamycin (84.2%), gentamycin (low level, 51.1%), rifampin (46.8%) and tetracycline (33.8%). Among the isolates, the frequencies of high level gentamycin and streptomycin resistant enterococci strains were 2.2% and 5.8%, respectively. Apart from the mentioned antibiotics, low levels of resistance to ciprofloxacin, erythromycin and chloramphenicol were found. Moreover no resistance was observed against penicillin and ampicillin. The antimicrobial resistance genes including tetM, tetL, ermB, cat, aph(3’)-IIIa, ant(6)-Ia and aac(6’)-Ieaph(2”)-Ia were found in enterococci from Turkish cheese samples. In the current study, we provided data for antibiotic resistance and the occurrence of resistance genes among enterococci. Regulatory and quality control programs for milk and other dairy products from farms to retail outlets has to be established and strengthened to monitor trends in antimicrobial resistance among emerging food borne pathogens in Turkey.

Marker Genes for in Vitro Selection of Transgenic Plants

  • Brasileiro, Ana C.M.;Aragao, Francisco J.L.
    • Journal of Plant Biotechnology
    • /
    • 제3권3호
    • /
    • pp.113-121
    • /
    • 2001
  • The use of a marker gene in a transformation process aims to give a selective advantage to the transformed cells, allowing them to grow faster and better, and to kill the non-transformed cells. In general, the selective gene is introduced into plant genome along with the genes of interest. In some cases, the marker gene can be the gene of interest that will confer an agronomic characteristic, such as herbicide resistance. In this review we list and discuss the use of the most common selective marker genes on plant transformation and the effects of their respective selective agents. These genes could be divided in categories according their mode of action: genes that confer resistance to antibiotics and herbicides; and genes for positive selection. The contention of the marker gene flow through chloroplast transformation is further discussed. Moreover, strategies to recover marker-free transgenic plants, involving multi-auto-transformation (MAT), co-transformation, site specific recombination and intragenomic relocation of transgenes through transposable elements, are also reviewed.

  • PDF

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • 한국동물위생학회지
    • /
    • 제30권4호
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.