• Title/Summary/Keyword: Anti-tubulin-FITC

Search Result 5, Processing Time 0.022 seconds

Cytoskeletal changes during nuclear and cell division in the freshwater alga Zygnema cruciatum (Chlorophyta, Zygnematales)

  • Yoon, Min-Chul;Han, Jong-Won;Hwang, Mi-Sook;Kim, Gwang-Hoon
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.197-204
    • /
    • 2010
  • Cytoskeletal changes were observed during cell division of the green alga Zygnema cruciatum using flourescein isothiocynate (FITC)-conjugated phallacidin for F-actin staining and FITC-anti-$\alpha$-tubulin for microtubule staining. Z. cruciatum was uninucleate with two star-shaped chloroplasts. Nuclear division and cell plate formation occurred prior to chloroplast division. Actin filaments appeared on the chromosome and nuclear surface during prophase, and the F-actin ring appeared as the cleavage furrow developed. FITC-phallacidin revealed that actin filaments were attached to the chromosomes during metaphase. The F-actin ring disappeared at late metaphase. At telophase, FITC-phallacidin staining of actin filaments disappeared. FITC-anti-$\alpha$-tubulin staining revealed that microtubules were arranged beneath the protoplasm during interphase and then localized on the nuclear region at prophase, and that the mitotic spindle was formed during metaphase. The microtubules appeared between dividing chloroplasts. The results indicate that a coordination of actin filaments and microtubules might be necessary for nuclear division and chromosome movement in Z. cruciatum.

Immunofluorescence and Electron Microscopic Study on the Artificial Insemination and Rotation-Shift Behaviors of the Bipolar Spindle Fiber in U. unicinctus Egg (U. unicinctus 난자의 인공수정과 감수분열 장치의 회전-이동행위에 관한 면역형광현미경 및 전자현미경적 연구)

  • Kwon, Hyuk-Jae;Jeong, Jin-Wook;Kim, Wan-Jong;Shin, Kil-Sang
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.105-116
    • /
    • 2003
  • In Vitro fertilization of U. unicinctus eggs observed by immunofluorescence and electron microscopes revealed an overview of the meiotic pattern of the tide animals. The eggs have been fertilized early at germinal vesicle stage, followed by germinal vesicle break down (GVBD), but pre-mitotic aster like structure could not be resolved by the methods employed in this work. The meiotic features, such as rotation-shift movement of spindle fibers, behavior of spermatozoonmonaster in the egg cytoplasm and active spindle fiber of the 1st polar body, have been observed. The antitubulin-FITC fluorescence show the 2nd meiotic apparatus appeared firstly parallel to the tangential line of the oolemma, proceeding the meiosis, its bipolarity is rotated and shifted towards the oolemma. The polar bodysite of the oolemma was not amorphous, but active in a sense of anti-tubulin-FITC reactions during the extrusions of the polar bodies. The immunofluorescence reactions of the spermatozoon centriole appeared at a later stage of the 2nd meiosis. During the time periods, the fertilized spermatozoon resided in the egg cytoplasm. Activating the centrioles, spermatozoon approaches towards the chromosomal materials of the 2nd oocyte. This suggests that spermatozoon centrioles initiate and play a roll to fuse male and female pronuclei.

The Effect of Cytochalasin B on Cytoskeletal Stability of Mouse Oocyte Frozen by Vitrification (생쥐 난자의 초자화동결 시 Cytochalasin B가 Cytoskeleton에 미치는 영향)

  • Paik, Wong-Young;Choi, Won-Jun;Kim, Se-Na;Lee, Jong-Hak
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.4
    • /
    • pp.229-236
    • /
    • 2002
  • Objective : The purpose of this study was to evaluate the effect of Cytochalasin B (CCB) on the cytoskeletal stability of mouse oocyte frozen by vitrification. Methods : Mouse oocytes retrieved from cycle stimulated by PMSG and hCG were treated by CCB and then vitrified in EFS-30. These oocytes were placed onto an EM grid and submerged immediately in liquid nitrogen. Thawing of the oocytes was carried out at room temperature for 5 seconds, then the EM grid was placed into 0.75 M, 0.5 M and 0.25 M sucrose at $37^{circ}C$ for 3 minutes, each. These oocytes were fixed in 4% formaldehyde for an hour and then washed in PPB for 15 minutes 3 times, then incubated in PPB containing anti-tubulin monoclonal antibody at $4^{circ}C$ overnight. And then, the oocytes were incubated with FITC-conjugated anti-mouse IgG and propidium iodide (PI) for 45 minutes. Pattern of microtubules and microfilaments of oocytes were evaluated with a confocal microscope. Results: The rate of oocytes containing normal microtubules and microfilaments was significantly decreased after vitrification. The rate of oocyte containing normal microtubules in CCB treated group was higher than those in non-treated group (53.7% vs. 48.9%), but the difference was not significant. The rate of oocyte containing normal microfilaments in CCB treated group was significantly higher than those in non-treated group (64.5% vs. 38.3%, p<0.05). Conclusion: Microfilaments stability could be improved by CCB treatment prior to vitrification. It is suggested that CCB treatment prior to vitrification improve stability of cytoskeleton and then increase success rate in IVF-ET program using vitrification and thawing oocyte.

Development of Effective Cryopreservation Method for Mouse Oocytes (생쥐 난자의 효율적인 냉동보존 방법 확립을 위한 연구)

  • Choi, Su-Jin;Kim, Soo-Kyung;Kim, Ji-Sun;Cho, Jae-Won;Jun, Jin-Hyun;Byun, Hye-Kyung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Objective: The purpose of this study was to evaluate the efficacy and effect of various cryopreservation method on the survival and the cytoskeletal stability of metaphase II mouse oocyte. Methods: Mouse ovulated oocytes were collected and cryopreserved by a modified slow-freezing method with 1.5 M 1, 2-propanediol (PrOH)+0.1 M sucrose or by vitrification using cryo loop and EM grid with 40% ethylene glycol+0.6 M sucrose. Four hours after thawing, intact oocytes were fixed and stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal anti-$\beta$-tubulin antibody to visualize spindle and propidium iodide (PI) to visualize chromosome. Spindle morphology was classified as follows: normal (barrel-shaped), slightly and absolute abnormal (multipolar or absent). Results: Survival rate of the frozen-thawed oocytes in vitrification group was significantly higher than that of slow-freezing group (62.7% vs. 24.4%, p<0.01). Vitrification with cryo loop showed significantly higher survival rate than that with EM grid (67.7% vs. 53.5%, p<0.05). On the other hand, proportion of normal spindle and chromosome configurations of the frozen-thawed oocytes between two vitrification group was not significantly different. Conclusion: For mouse ovulated oocytes, vitrification with cryo loop may be a preferable procedure compared to slow-freezing method. Further study should be needed to investigate developmental competency of frozen-thawed mouse oocytes.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.