• Title/Summary/Keyword: Anti-reflectance coating

Search Result 49, Processing Time 0.021 seconds

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Design and Analysis of Optical Properties of Anti-reflection Coated ZnS Substrates in the Mid-infrared Region (중적외선 영역의 무반사 코팅된 ZnS 기판의 설계와 광학 특성)

  • Park, Buem Keun;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.255-259
    • /
    • 2022
  • In this study, we fabricated ZnS substrates with excellent transmittance in the mid-infrared region (3-5 ㎛) using hot pressing instead of conventional chemical vapor deposition (CVD). Diamond-like carbon (DLC) was coated on either one or both sides of the ZnS substrates to improve their mechanical properties and transmittance efficiency. To reduce the reflectance and further improve transmittance in the mid-infrared region, anti-reflection (AR) coating was designed for DLC/ZnS /AR and AR/ ZnS /AR structures. The coating structure, microstructure, and optical properties of the AR-coated ZnS substrates were subsequently investigated by employing energy dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared (FTIR) spectroscopy. The FTIR spectroscopy results demonstrated that, in the mid-infrared region, the average transmittance of the samples with AR coating on one and both sides increased by approximately 18% and 27%, respectively. Thus, AR coating improved the transmittance of the ZnS substrates.

Optimizing Surface Reflectance Properties of Low Cost Multicrystalline EFG Ribbon-silicon (저가 다결정 EFG 리본 웨이퍼의 표면 반사도 특성 최적화)

  • Kim, Byeong-Guk;Lee, Yong-Koo;Chu, Hao;Oh, Byoung-Jin;Park, Jae-Hwan;Lee, Jin-Seok;Jang, Bo-Yun;An, Young-Soo;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2011
  • Ribbon silicon solar cells have been investigated because they can be produced with a lower material cost. However, it is very difficult to get good texturing with a conventional acid solution. To achieve high efficiency should be minimized for the reflectance properties. In this paper, acid vapor texturing and anti-reflection coating of $SiN_x$ was applied for EFG Ribbon Si Wafer. P-type ribbon silicon wafer had a thickness of 200 ${\mu}m$ and a resistivity of 3 $\Omega-cm$. Ribbon silicon wafers were exposed in an acid vapor. Acid vapor texturing was made by reaction between the silicon and the mixed solution of HF : $HNO_3$. After acid vapor texturing process, nanostructure of less than size of 1 ${\mu}m$ was formed and surface reflectance of 6.44% was achieved. Reflectance was decreased to 2.37% with anti-reflection coating of $SiN_x$.

Design of Anti-Reflection Coating thin film for Multi-Type Optical Connector (광커넥터 Multi-Type을 위한 무반사 코팅 박막 설계)

  • Ki, Hyun-Chul;Kim, Hwe-Jong;Jo, Jea-Chul;Hong, Kyung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.80-81
    • /
    • 2008
  • In this paper, we have designed the Anti-Reflection (AR) coating for 850, 1310 nm(multi type) and 1310, 1550 nm(multi type) wavelength ranges on the ferrule facet of special optical connector. The reflectance of the AR coated ferrule facet is designed under 5% for 850, 1310 nm(multi type) and 1310, 1550 nm (multi type). The average return loss of the AR coated ferrule facet is 47.1 dB.

  • PDF

High-Transmittance Films Coated from Silica Colloidal Nano-Particles (II) (실리카 콜로이드 나노입자를 이용한 반사 방지막의 제조 (II))

  • Hwang, Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.399-404
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloidal particles and fumed silica particles. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were stacked to form a film onto the substrate as the upper glass was sliding. The deposition processes were studied to enhance the wavelength dependency of the light transmittance and to control the effective refractive index of the film. Both of the spherical and fumed silica particles showed an enhancement of $4.0-4.4\%$ in light transmittance by one step coating. The dependence of the transmittance on wavelength was largely improved at the longer wavelength by partial coating of fumed particles on the film of spherical particles. The effective refractive index of the film was controlled by removing latex particles that were co-deposited with silica particles. Using this process the light reflectance from one side of the glass substrate could be reduced from $4.2\%$ to $0.6\%$ although zero reflectance was not achieved due to the agglomeration of the latex particles.

Two-dimensional model simulation for reflectance of single crystalline silicon solar cell (단결정 실리콘 태양전지 2차원 모델의 반사율 시뮬레이션)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.237-242
    • /
    • 2012
  • At present, crystalline solar cells take up a significant percentage of the solar industry. The ways of increasing the efficiency of crystalline solar cell are texturing and AR(Anti-Reflection) coating, and the purpose of these technologies is to increase the amount of available light on the solar cell by reducing the reflectivity. The reflectance of crystalline silicon solar cell combined with such technologies will be able to predict using the proposed simulation in this paper. The simulation algorithm was made using MATLAB, and it is a combination of the theories of reflection in textured wafer and in anti-reflection coated wafer. The simulation results were divided into three wavelength band and were compared with actual reflectance measured by a spectrometer. The wavelength band from 300 to 380 was named ultraviolet region and the wavelength band from 380 to 780 is named visible region. Finally, the wavelength band from 780 to 1200 named infrared region. When compared with measured reflection data, the simulation results had a small error from 0.4 to 0.5[%] in visible region. The error occurred in the rest two regions is larger than visible region. The extreme error occurred the infrared region is due to internal reflection effect, but in the ultraviolet region, the rationale on reduction phenomenon of reflectance occurred in small range did not proved. If these problem will be solve, this simulation will have high reliability more than now and be able to predict the reflectance of solar cells.

  • PDF

Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index (콜로이드 실리카 나노입자의 부착에 의한 반사방지막 제조 및 굴절율 조절)

  • Hwang Yeon;Prevo Brian;Velev Orlin
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.285-292
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloids. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were convectively stacked to form a film onto the substrate as the water evaporates. As the sliding speed increased, the thickness of the film decreased and the wavelength at the maximum transmittance decreased. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness was measured by proffer and calculated from the wavelength of maximum transmittance and the effective refractive index. The effective refractive index of the film could be controlled by a subtle controlling of the coating speed and by mixing two different sized silica particles. When the 100 nm and 50 m particles were mixed at 4:1-5:1 volume ratio, the maximum transmittance of $95.2\%$ for one-sided coating was obtained. This is the one that has increased by $3.8\%$ compared to bare glass substrate, and shows that $99.0\%$ of transmittance or $1.0\%$ of reflectance can be achieved by the simple process if both sides of the substrate are coated.

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Fabrication of Single Layer Anti-reflection Thin Film by Sol-gel Method (Sol-gel법에 의한 단층 반사 방지막 제조)

  • Park, Jong-Guk;Jeon, Dae-Woo;Lee, Mi-Jai;Lim, Tea-Young;Hwang, Jonghee;Bae, Dong-Sik;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.821-825
    • /
    • 2015
  • Anti-reflective (AR) thin film was fabricated on a glass substrate by sol-gel method. The coating solution was synthesized with TEOS (tetraethlyorthosilicate) and poly ethylene glycol (PEG, 4.0 wt%). As the withdrawal speed of coating was changed from 0.1 mm/sec to 0.3 mm/sec, the thickness and refractive index of prepared thin films were changed. The reflectance and transmittance of coating glass fabricated by the withdrawal speed of 0.1 mm/sec were 0.62% and 95.0% in visible light range. The refractive index and thickness of single layer thin film were n= 1.29 and ca. 99.0 nm.

산화규소 박막을 활용한 반사방지막 코팅 제조 및 특성분석

  • Kim, Gyeong-Hun;Kim, Seong-Min;Jang, Jin-Hyeok;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.300.1-300.1
    • /
    • 2013
  • 반사방지막 코팅(Anti-reflection coating)은 태양전지(Solar cell), 발광다이오드(LED) 등의 반사율을 낮추어 효율을 증대시키기 위하여 사용되고 있다. 본 실험에서는 유리 기판 위에 실리콘 타겟을 이용한 Reactive magnetron sputtering 장비를 활용하여, 50~100 mTorr의 높은 공정 압력(High pressure)에서 증착하여 SiO2 반사방지막 코팅층을 형성하였다. Ellipsometer를 이용하여 SiO2 박막층의 굴절률(Refractive index)을 측정한 결과, 공정 압력에 따라 SiO2 박막이 다양한 굴절률을 가지는 것을 확인할 수 있었다. 또한, UV-Vis spectrometer를 이용하여, 450~600 nm 파장에서의 반사율(Reflectance)과 투과율(Transmittance)을 측정하여 비교, 분석하였다. 나아가 증착된 SiO2 반사방지막을 비정질 실리콘 박막 태양전지에 적용하여 효율 향상 효과를 실험하였다. 이를 활용하여 낮은 굴절률을 갖는 반사방지용 SiO2 코팅층을 형성하여 태양전지의 광 변환 효율을 상승 시킬 수 있고, 발광다이오드의 광 추출 효율을 증가시킬 있을 것으로 여겨진다.

  • PDF