• Title/Summary/Keyword: Anti-oxidizing effect

Search Result 14, Processing Time 0.016 seconds

Measurement and Verification of Thermal Conductivity of Multilayer Thin Dielectric Film via Differential $3\omega$ Method (차등 $3\omega$ 기법을 이용한 다층 유전체 박막의 열전도도 측정 및 검증)

  • Shin, Sang-Woo;Cho, Han-Na;Cho, Hyung-Hee
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.85-90
    • /
    • 2006
  • In this study, measurement of thermal conductivity of multilayer thin dielectric film has been conducted via differential $3\omega$ method. Also, verification of differential $3\omega$ method has been accomplished with various proposed criteria. The target film for the measurement is 300 nm thick silicon dioxide which is covered with upper protective layer of various thicknesses. The upper protective layer is inserted between the target film and the heater line for purpose of electrical insulator or anti-oxidation barrier since the target film may be a good electrical conductor or a well-oxidizing material. Since the verification of differential $3\omega$ method has not been conducted yet, we have shown that the measurement of thermal conductivity of thin films with upper protective layer via differential $3\omega$ method is verified to be reliable as long as the proposed preconditions of the samples are satisfied. Experimental results show that the experimental errors tend to increase with aspect ratio between thickness of the upper protective layer and width of the heater line due to heat spreading effect.

  • PDF

Isolation of Flavonoids from Carthami Flos and their Antioxidative Activity (홍화의 플라보노이드 성분 분리 및 항산화 활성)

  • Chung, Sung-Hee;Moon, Ye-Ji;Kim, Sung-Gun;Kim, Kyoung-Young;Lee, Kyoung-Tae;Kim, Ho-Kyoung;Whang, Wan-Kyunn
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.241-251
    • /
    • 2008
  • In this study, isolation of antioxidative compounds was performed for development of anti-oxidizing agent. $CHCl_{3}$, $H_{2}O$, 30%, 60% MeOH, MeOH fractions were examined antioxidative activity by DPPH method, TBARS assay, and SOD like activity. It was revealed that 30%, 60% MeOH fractions had significant antioxidative activity. From 30%, 60% MeOH fraction, nine compounds were isolated and elucidated kaempferol $3-O-{\alpha}-L-rhamnopyranosyl$ $(1{\rightarrow}6)-{\beta}-D-glucopyranoside$ (1), quercetin $7-O-{\beta}-D-glucopyranoside$ (II), quercetin $3-O-{\alpha}-L-rhamnopyranosyl$ $(1{\rightarrow}6)$ ${\beta}-D-glucopyranoside(rutin)$ (III), 6-hydroxykaempferol $3-O-{\beta}-D-glucopyranoside$ (lV), kaempferol $3-O-{\beta}-D-glucopyranosyl$ $(1{\rightarrow}2)$ ${\beta}-D-glucopyranoside$ (V), kaempferol $3-O-{\beta}-D-glucopyranoside$ (VI), luteolin (VII), quercetin $3-O-{\beta}-D-glucopyranoside$ (VIII), apigenin $7-O-{\beta}-D-glucuronopyranoside$ (IX) through physicochemical data and spectroscopic methods (Negative FAB-MS, $^1H-NMR$, $^{13}C-NMR$). Entirely, all compounds had similar antioxidative activity, but more OH group had more antioxidative activity.

Physiological and Pharmacological Activites of Nutraceutical Tea by Leaves and Flowers of Domestic Camellia(Camellia japonica)

  • Lee, Sook-Young;Cha, Young-Ju;Lee, Jang-Won;Hwang, Eun-Ju;Kwon, Su-Jung;Cho, Su-In
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.48-49
    • /
    • 2003
  • This project was conducted to development several camellia tea mixed herb teas having any physiological effects. Leaves of tea tree contain many compounds, such as polysaccharides, volatile oils, vitamins, minerals, purines, alkaloids(eg. caffeine) and polyphenols(catechins and flavonoids). Although all three tea types(green, oolonr and black) have antibacterial and free radical capturing(antioxidizing) activities, the efficacy decreases substantially the darker the variety of tea is. This is due to lower contents of anti-oxidizing polyphenols remaining in the leaves. Unlike tea tree(Camellia sinensis), the biochemical features and effects of camellia(Camellia japonica) are not well known. Fresh mature leaf of sasanqua camellia(C. sasanqua), roasted young leaf tea(C. japonica) and fresh mature leaf and bark of camellia had high antibacterial activity against P. vulgaris and B. subtilis. In antifungal activity bioassay, young leaf roasted teas of camellia and sasanqua camellia had high activity against C. albicans and T. beigelil. Plant extracts from Camelia japonica had higher inhibitory activity against fungi than against bacteria. In cytotoxic effect against human acute myelogenous leukaemia cell extracts including fresh leaf(200$\mu\textrm{g}$/m1), bark(230$\mu\textrm{g}$/ml) and flower tea (320$\mu\textrm{g}$/m1)inhibited growth of AML cells.(중략)

  • PDF

Texturing Multi-crystalline Silicon for Solar Cell (태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제)

  • Ihm, DaeWoo;Lee, Chang Joon;Suh, SangHyuk
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 2013
  • Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.