• Title/Summary/Keyword: Anti-inflammatory drug

Search Result 652, Processing Time 0.024 seconds

Discovery of a Novel 2,6-Difunctionalized 2H-Benzopyran Inhibitors Toward Sphingosylphosphorylcholine Synthetic Pathway as New Anti-inflammatory Target

  • Lee, Gee-Hyung;Lee, Seong Jin;Jeong, Dae Young;Kim, Ha-Young;Lee, Doohyun;Lee, Taeho;Hwang, Jong-Yeon;Park, Woo Kyu;Kong, Jae-Yang;Cho, Heeyeong;Gong, Young-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2385-2390
    • /
    • 2014
  • Novel 2,6-difuctionalized 2H-benzopyrans were synthesized and evaluated for a sphingosylphosphorylcholine(SPC) inhibitor. The synthetic 2H-benzopyrans 1c and 3a showed high potency in SPC-induced cell proliferation assay ($IC_{50}$ < 20 nM). Neither hERG $K^+$ channel binding (> $10{\mu}M$) nor CYP inhibitions (> $10{\mu}M$) were observed. Also, the simple structure-activity relationship (SAR) results were obtained from analysis of 2H-benzopyran derivatives 1-3 and the anti-SPC effect of 2H-benzopyran 1c was confirmed by a HUVEC tube formation assay.

The Acetylation-based synthesis of 3,3',4',5,5',7-hexaacetate myricetin and evaluation of its anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 mouse macrophage cells

  • Kristina Lama;Hyehyun Hong;Tae-Jin Park;Jin-Soo Park;Won-Jae Chi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.29-38
    • /
    • 2023
  • Recent studies have highlighted the link between diseases and inflammation across our lifespan. Our sedentary lifestyle, high-calorie diet, chronic stress, chronic infections, and exposure to pollutants and xenobiotics, collectively intensify the course and recurrence of infections and inflammation in our bodies, promoting the prevalence of chronic diseases and aging. Given such phenomena and considering additional factors such as the frequency of prescription, and easy access to over-the-counter drugs, the need for anti-inflammatory therapeutics is ever-increasing. However, the readily available anti-inflammatory treatment option comes with a greater risk of side effects or high cost (biologics). Therefore in this growing competition of discovering and developing new potent anti-inflammatory drugs, we focused on utilizing the established knowledge of traditional medicine to find lead compounds. Since lead optimization is an indispensable step toward drug development, we applied this concept for the production of potent anti-inflammatory compounds achieved by structural modification of flavonoids. The derivative obtained through acetylation of myricetin, 3,3',4',5,5',7-hexaacetate myricetin, showed a greater inhibitory effect in the production of pro-inflammatory mediators such as nitric oxide, Prostaglandin E2, and pro-inflammatory cytokines like interleukin-6, interleukin1β, in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells compared to myricetin. The increased potency of inhibition was in conjunction with an increased inhibitory effect on inducible nitric oxide synthase and cyclooxygenase-2 proteins. Through such measures, this study supports lead optimization for well-established lead compounds from traditional medicine using a simpler and greener chemistry approach for the purpose of designing and developing potent anti-inflammatory therapeutics with possibly fewer side effects and increased bioavailability.

Comparison of Piroxicam Pharmacokinetics and Anti-Inflammatory Effect in Rats after Intra-Articular and Intramuscular Administration

  • Park, Chan Woong;Ma, Kyung Wan;Jang, Sun Woo;Son, Miwon;Kang, Myung Joo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.260-266
    • /
    • 2014
  • This study evaluated the pharmacokinetic profile and therapeutic efficacy of piroxicam (PX), a long acting non-steroidal anti-inflammatory drug for the treatment of arthritis, following intra-articular (IA) injection in comparison to the pharmacokinetic profile and therapeutic efficacy of PX after intramuscular (IM) injection. In the pharmacokinetic study in rats, systemic exposure and pharmacokinetic parameters of PX after a single IA dose were compared with systemic exposure and pharmacokinetic parameters of PX after administration of the same dose IM (0.6 mg/kg). The anti-inflammatory and analgesic effects of IA PX were evaluated simultaneously in a monoiodoacetate-induced osteoarthritis rat model. The plasma PX concentration rapidly rose following IA injection, and it was comparable to the plasma PX concentration following IM injection, suggesting the rapid efflux of the drug molecule from the joint cavity. However, in the efficacy study, the IA PX administration significantly reduced the knee swelling by reducing the level of prostaglandin $E_2$ in the joint, compared to that following administration of IA vehicle and after administration of the IM PX dose. In addition, we found that the anti-inflammatory and anti-nociceptive efficacies of IA PX were synergistically increased upon co-treatment with hyaluronic acid (HA), a potent agent for the treatment of osteoarthritis, at the weight ratio of 1:1 or 1:2, and these effects were more pronounced than those following administration of HA or PX alone. In conclusion, this study demonstrated the efficacy of the IA use of PX alone and/or in combination with HA in osteoarthritis.

Current and Future Molecular Mechanism in Inflammation and Arthritis

  • Sharma, Vikash;Tiwari, Raj Kumar;Shukla, Shiv Shankar;Pandey, Ravindra Kumar
    • Journal of Pharmacopuncture
    • /
    • v.23 no.2
    • /
    • pp.54-61
    • /
    • 2020
  • Inflammation is an immune response of the human body but excessive inflammation is taken as a major factor in the development of many diseases including autoimmune disorders, cancer and nerve disorders etc. In this regards the need is to suppress the inflammatory response. Suppression of extra or imperfect inflammatory response is not a big deal provided there is an exact knowledge of particular target in the body. Recent advancements in Pharmacological aspect made the therapy with improved outcomes in number of patients. Anticytokine therapy might be one of the important and novel approaches for inflammation and Arthritis. This can be achieved only when we go through the pathophysiology of expression and identification of mediators. Let's take an example of cytokine like interleukins (IL), chemokines, interferons (INF), tumor necrosis factors (TNF-α), growth factors, and colony stimulating factors) release pathway which is a major signalling protein in inflammatory response. In the present study we have reviewed the recent pharmacological therapeutic advancement, inflammatory mediators, receptors, and major signalling pathways. Such information will not only provide the idea about the mechanism of action of Pharmaceuticals and molecular targets but also it provides a new aspect for drug designing and new corrective approaches in existing clinical medicines. This study will be a source of good information for the researchers working in the area of drug designing and molecular Pharmacology especially in anti-inflammatory and anti arthritic medicines for target based therapy.

Anti-inflammatory Effects of Asiaticoside on Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in RAW 264.7 Cell Line (Asiaticoside가 RAW 264,7 세포에서 Inducible nitric oxide synthase와 Cyclooxygenase-2에 미치는 항염증 작용에 관한 연구)

  • 주상섭;배옥남;정진호
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Asiaticoside has been tested for the ability as an anti-inflammatory drug using lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 264.7 cell). LPS treatment induced dramatically inducible nitric oxide synthase (iNOS) in RAW cells. However, asiaticoside inhibited LPS-stimulated iNOS induction in a concentration-dependent manner. Especially, higher concentrations (>50 $\mu\textrm{M}$) of asiaticoside completely blocked iNOS induction. In addition, LPS-stimulated expression of inducible cyclooxygenase (COX-2) and interleukin-1 $\alpha$ (IL-1 $\alpha$) was inhibited by asiaticoside treatment. Asiaticoside up to 50 $\mu\textrm{M}$ still required to inhibit COX-2 and IL-1 $\alpha$ induced by LPS. Consistent with these findings, treatment with asiaticoside suppressed do novo synthesis and cellular accumulation of prostaglandin $E_2$ to a lesser extent, suggesting that asiaticoside blocked the induction as well as the activity of COX-2 These results suggest the possibility that asiaticoside may be effective therapeutic agents for septic shock and other inflammatory diseases.

Phonophoretic Delivery of Piroxicam (초음파를 이용한 피록시캄의 경피흡수)

  • Chung, Kyu-Ho;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.259-265
    • /
    • 2002
  • Piroxicam is one of the NSAID, which is used in the systemic and topical treatment of a variety of inflammatory conditions. Conventionally, for topical use, the drug is formulated in gel. We designed an phonophoretic drug delivery system to investigate the piroxicam permeability and the influence of ultrasound application (continuous mode, pulsed mode), frequency (1.0 MHz, 3.0 MHz) and intensity $(1.0\;w/cm^2,\;1.5\;w/cm^2,\;2.0\;w/cm^2)$ with 0.5% piroxicam gel. Per cutaneous absorption studies were performed in vitro models to determine the rate of drug absorption via the skin. Permeation study using hairless mouse skin was performed at $37^{\circ}C$ using buffered saline (pH 7.4, 10% propylene glycol solution) as the receptor solution. Anti-inflammatory activity was determined using carrageenan-induced foot edema model in rat. A pronounced effect of ultrasound on the skin absorption of the piroxicam was observed at all ultrasound energy level studied. Ultrasound was carried out for 10 hr. The highest permeation was observed at intensity of $2.0\;w/cm^2$, frequency of 1.0 MHz and continuous output. The inclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory activity in vivo.

A Case of Urticarial Drug Eruption Assumed to be Caused by non-steroidal anti- inflammatory drugs (NSAIDs) (비스테로이드성 소염진통제 (NSAIDs) 에 의한 것으로 추정되는 담마진성 약진 치험 1례)

  • Yu, Hyun-Jung;Hong, Seung-Ug
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.1 s.32
    • /
    • pp.256-264
    • /
    • 2007
  • Objective : This study describes a case of urticarial drug eruption assumed to be caused by non-steroidal anti- inflammatory drugs (NSAIDs) treated with oriental medicine and acupuncture. Methods : We studied the case of 20-years-old drug eruption patient. The patient complained of urticaria, angioedema, itching and burning sensation after taking NSAIDs. The indications for NSAIDs prescribed were common cold symptom and sore throat. For diagnosis, blood test and urinalysis were done. For treatment, acupuncture and herbal-medicine treatment were applied. Results : The patient of this report were examined for 13 days. The radiological finding was within normal limits. The WBC, neutrophil, lymphocyte and eosinophil level normalized during admission. After 3 days, itching and wheal reaction of whole body disappeared except facial symptom. The angioedema, itching and wheal reaction in the face was almost improved in the 4th day after discharge. Conclusions : We may expect that the oriental medical therapy improves the urticarial drug eruption caused by NSAIDs.

  • PDF

Synthesis and Biological Activity of Aspirin Derivatives

  • Cha, Bae-Cheon;Lee, Seung-Bae
    • Archives of Pharmacal Research
    • /
    • v.23 no.2
    • /
    • pp.116-120
    • /
    • 2000
  • Aspirin has been widely used as analgesic and anti-inflammatory drug. Recently, it was elucidated that aspirin have anti-coaggregatory effect in low dose. This study was carried out to investigate the synthesis of aspirin derivatives from aspirin and aromatic compound of antioxidant and its biological activities. Synthesis of aspirin derivatives was prepared by esterification in the presence of 1, 1-carbonyldiimidazole. Biological activities was examined using effect of anti-coagulant on bleeding time, effect of antioxidant and effect of anti-platelet aggregation. As a result, SJ-101 showed strong antioxidative activity and anti-coagulant activity among four compounds. Anti-platelet aggregation of SJ-101 was examined by collagen, ADP, PAF method. SJ-101 exhibited more stronger activity to aspirin at collagen aggregation reaction. These finding demonstrates that SJ-101 is usefull as care drug of aging and old-disease because of its has antioxidant activity, anti-coagulant activity and anti-platelet activity.

  • PDF

[Retraction]Anti-inflammatory activity of a short peptide designed for anti-cancer: a beneficial off-target effect of tertomotide ([논문철회]항암백신 tertomotide의 항염활성 연구)

  • Lee, Hyosung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.101-107
    • /
    • 2022
  • Tertomotide is a peptide vaccine developed for anti-cancer therapy. Since it has been found to ameliorate inflammatory symptoms in animal studies and clinical test, we investigated anti-inflammation activity of the tertomotide and the mechanism of action in monocyte in order to assess if tertomotide may serve as an anti-inflammatory agent by checking inflammatory cytokines and related signaling pathway following tertomotide treatment. We found that tertomotide reduced the level of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-8 in LPS- or PMA-stimulated monocyte cell line and suppressed NF-κB signaling including the activation of ERK1/2 and P38 MAPK following TNF-α treatment. These results may correlate to the beneficial findings in animal studies, implicating that tertomotide may act as a potential anti-inflammatory agent. This study is an exemplary case for convergence that a computationally designed peptide for immunological purpose exerting unexpected biological activity may elicit novel anti-inflammatory drug.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.