• Title/Summary/Keyword: Anti-inflammatory and Antioxidant Effects

Search Result 825, Processing Time 0.034 seconds

The Protective Role of Gleditsiae fructus against Streptococcus pneumoniae (폐렴 구균에 대한 조협의 보호 역할 연구)

  • Jun-ki Lee;Se-Hui Lee;Dong Ju Seo;Kang-Hee Lee;Sojung Park;Sun Park;Taekyung Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.158-168
    • /
    • 2023
  • Natural products have been used to mitigate the effects of cancer and infectious diseases, as they feature diverse bioactivities, such as antioxidant, antibacterial, anti-inflammatory, and immunomodulatory effects. Here, we chose 10 natural products that are well-known as pulmonary enhancers and investigated their bactericidal effects on Streptococcus pneumoniae. In the disk diffusion assay, the growth of S. pneumoniae was significantly regulated by G. fructus treatment regardless of extraction method used. We first adopted spraying as a novel delivery method for G. fructus. Interestingly, mice exposed to G. fructus three times a day for 2 weeks were resistant to S. pneumoniae intranasal infection (shown both through body weight loss and survival rates compared to the control group). Moreover, we confirmed that exposure to G. fructus regulated the colonization of the bacteria despite the sustained inflammation in the lung after exposure to S. pneumoniae, indicating that migrated inflammatory immune cells may involve a host defense mechanism against pulmonary infectious diseases. While a similar number of granulocytes (CD11b+Ly6C+Ly6G+), neutrophils (CD11b+Ly6CintLy6G+), and monocytes (CD11b+Ly6CintLy6G-) were found between groups, a significantly increased number of alveolar macrophages (CD11b+CD11chiF4/80+) was detected in BAL fluids of mice pre-exposed to G. fructus at 5 days after S. pneumonia infection. Taken together, our data suggest that this usage of G. fructus can induce protective immunity against bacterial infection, indicating that facial spray may be helpful in enhancing the defense mechanism against pulmonary inflammation and in evaluating the efficacy of natural products as immune enhancers against respiratory diseases.

Study on Skin pH Improvement Effect through Regulation of Na+/H+ Exchanger 1 (NHE1) Expression of Prunella vulgaris Extract and Its Active Compound, Caffeic Acid (꿀풀 추출물과 그 활성 화합물인 카페인산의 Na+/H+ exchanger 1 (NHE1) 발현 조절을 통한 피부 pH 개선 효과에 대한 연구)

  • No-June Park;Sim-Kyu Bong;Sang-A Park;Gi Hyun Park;Young Chul Ko;Hae Won Kim;Su-Nam Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • This study was conducted to discover substances that regulate skin surface acidification using human epidermal keratinocyte cell lines, and to investigate their effects on the moisturizing ability and skin barrier function of the stratum corneum. Prunella vulgaris (P. vulgaris) is an herb widely distributed in Northwest Africa and North America that has been studied for its anti-apoptotic, antioxidant, and anti-inflammatory effects. However, research on the regulation of NHE1 expression and the restoration of skin barrier function has not been conducted. Analysis of P. vulgaris revealed the presence of rosmarinic acid and caffeic acid as active ingredients, which were tested for toxicity in human epidermal keratinocyte cell lines (HaCaT), and showed no toxic effects were observed at high concentarion (100 ㎍/mL or 100 µM). It is known that sodium-hydrogen ion exchange pumps (NHE1) decrease in expression in aging skin to maintain the acidic pH of the stratum corneum, and it is hypothesized that this decrease plays an important role in the impaired restoration of skin barrier function in aging skin. P. vulgaris extract and caffeic acid increased the expression of NHE1 in keratinocytes, increased the expression of natural moisturizing factor (NMF) precursor filaggrin and ceramide synthesis enzyme serine palmitoyl transferase (SPT). In addition, P. vulgaris and caffeic acid decreased the extracellular pH of keratinocytes, indicating a direct effect on skin pH regulation. Taken together, these results suggest that P. vulgaris and caffeic acid can regulate skin pH through NHE1 modulation, and may help to restore skin barrier function by increasing NMF and ceramide synthesis. These results show the possibility that honeysuckle and caffeic acid can have a positive effect on skin health, and can be the basis for the development of new skin protection products using them.

Evaluation of Sprouted Barley as a Nutritive Feed Additive for Protaetia brevitarsis and Its Antibacterial Action against Serratia marcescens (흰점박이꽃무지 사료첨가제로서 새싹보리의 곤충병원성 세균에 대한 항균 효과에 관한 연구)

  • Song, Myung Ha;Kim, Nang-Hee;Park, Kwan-Ho;Kim, Eunsun;Kim, Yongsoon
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2021
  • Interest in edible insects such as Protaetia brevitarsis has increased rapidly, and several insect producers use these insects in industrialized mass production. However, mass rearing of insects can cause insect diseases. Sprouted barley is a valuable source of nutrients and has antioxidant, antimicrobial, anti-inflammatory, and anti-cancer effects. This study was conducted to investigate the effect of sprouted barley as a feed additive for producing healthy P. brevitarsis larvae. P. brevitarsis larvae were fed feeds with or without sprouted barley, and their body weight and larval period wewe checked weekly. To confirm the antibacterial effects of sprouted barley, in vitro bioassays were performed by counting Serratia marcescens colonies, and in vivo bioassays were performed by determining the survival rate and body weights of the S. marcescens-infected larvae. Larvae fed different feeds were analyzed for their nutrient compositions (i.e., such as proximate composition, minerals, amino acids, and heavy metals). Larvae fed 5% and 10% sprouted barley had maximum weight increases of 19.2% and 23.1%, respectively. Both treatment groups had significantly shorter larval periods than those of the control group. Sprouted barley markedly inhibited the growth of entomopathogenic S. marcescens. Furthermore, larvae fed sprouted barley exhibited higher Cu, Zn, and K levels. Seventeen amino acids were present in larvae fed sprouted barley, of which, tyrosine and glutamic acid were predominant. No heavy metals were detected in any of the investigated groups. Therefore, sprouted barley may be a suitable feed additive for producing high-quality P. brevitarsis larvae.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Antihepatotoxic and Antigenotoxic Effects of Herb Tea Composed of Chrysanthemum morifolium Ramat. (국화차를 포함하는 허브차의 CCl4로 유도된 간세포손상 보호 및 항유전독성 효과)

  • Lee, Hyun-Jung;Hwang, Young-Il;Park, Eun-Ju;Choi, Sun-Uk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • The flower of Chrysanthemum morifolium Ramat. with antioxidant, anticancer, and anti-inflammatory functions has been a widely used traditional herb as a healthy beverage and medicine. The aim of the present study was to investigate a herb tea consisting of C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon for its hepatoprotective activity against $CCl_4$-induced toxicity in freshly isolated rat hepatocytes and antigenotoxic effect against oxidative stress induced DNA damage in human leukocytes. Three different compositions of the herb tea (Mix I, II, and III) were prepared by extracting with water at $90^{\circ}C$. Freshly isolated rat hepatocytes were exposed to $CCl_4$ along with/without various concentrations of each tea. Protection of rat primary cells against $CCl_4$-induced damage was determined by the MTT assay. The significant antihepatotoxic effect of the tea was shown in Mix I and II. The increased transaminase (AST and/or ALT) release in media of $CCl_4$ treated hepatocytes was significantly lowered by all the teas tested. The effect of the tea on DNA damage in human leukocytes was evaluated by Comet assay. All teas showed a protective effect against $H_2O_2$-induced DNA damage. From these results, it is assumed that herb tea based on C. morifolium Ramat., Corni fructus and Schizandra chinensis Baillon exerted antihepatotoxic and antigenotoxic effects.