• Title/Summary/Keyword: Anti-inflammation effect

Search Result 1,597, Processing Time 0.033 seconds

The antinociceptive and anti-inflammatory effect of water-soluble fraction of bee venom on rheumatoid arthritis in rats

  • Lee, Jang-Hern;Kwon, Young-Bae;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Hye-Jung
    • Journal of Pharmacopuncture
    • /
    • v.4 no.1
    • /
    • pp.65-84
    • /
    • 2001
  • We recently demonstrated that bee venom (BV) injection into acupoint (i.e. Zusanli) produced more potent anti-inflammatory and antinociciptive effect in Freunds adjuvant induced rheumatoid arthritis (RA) model as compared with that of non-acupoint injection(i.e back). However, the precise components underlying BV-induced antinociceptive and/or anti-inflammatory effects have not been fully understood. Therefore, we further investigated the anti-arthritic effect of BV after extracting the whole BV according to solubility (water soluble: BVA, ethylacetate soluble: BVE). Subcutaneous BVA treatment (0.9 mg/kg/day) into Zusanli acupoint was found to dramatically inhibit paw edema and radiological change (i.e. new bone proliferation and soft tissue swelling) caused by Freunds adjuvant injection. In addition, the increase of serum interleukin-6 by RA induction was normalized by the BVA treatment as similar with that of non-arthritic animals. On the other hand, BVA therapy significantly reduced arthritis induced nociceptive behaviors (i.e., nociceptive score for mechanical hyperalgesia and thermal hyperalgesia). Furthermore, BVA treatment significantly suppressed adjuvant induced Fos expression in the lumbar spinal cord at 3 weeks post-adjuvant injection. However, BVE treatment (0.05 mg/kg/day) has not any anti-inflammatory and anti-nociceptive effect on RA. Based on the present results, we demonstrated that BVA might be a effective fraction in whole BV for long-term treatment of RA-induced pain and inflammation. However, it is clear necessary that further fraction study about BVA was required for elucidating an effective component of BVA.

Study on Antioxidant and Anti-inflammatory Activities of Persicaria tinctoria (쪽의 항산화 및 항염증 활성에 대한 연구)

  • Kim, Soo-Jeung;Jang, Tae Won;Kim, Do-Wan;Park, Jae Ho
    • The Korea Journal of Herbology
    • /
    • v.30 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • Objectives : Persicaria tinctoria belongs to the Polygonaceae family and it has been used as the natural dye traditionally. Also, it is well known that the Persicaria tinctoria is used for treating the following symptoms such as fever, inflammation and edema. The purpose of this study is to investigate the effective source of antioxidants and anti-inflammatory agent from various parts of Persicaria tinctoria.Methods : We investigated the antioxidative and anti-inflammatory properties of the Persicaria tinctoria extracts. Antioxidant activities were measured by 1,1-diphenyl-2- picrylhydrazyl (DPPH), 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, Fe2+ chelating activity and Reducing power of Persicaria tinctoria extracts. And its inhibitory effect against oxidative DNA damage was evaluated in non-cellular system using φX-174 RF I plasmin DNA. The anti-inflammatory effect of Persicaria tinctoria was measured by using the inhibitory efficacy for the amount of nitric-oxide (NO) produced in LPS induced RAW264.7 cells.Results : The extracts from stem part showed better DPPH scavenging activity compared to those of the leaf and root extracts. Their IC50s were measured as 7.17, 144.40 and 165.07 ug/ml, respectively. These results were similar to that of ABTS radical scavenging assay and reducing power. Also, Persicaria tinctoria showed the protective effects of DNA damage against oxidative stress and anti-inflammatory effect by suppression of NO production in LPS induced RAW264.7 cells.Conclusions : These results showed that various parts of Persicaria tinctoria can be used as an effective source of antioxidants and anti-inflammatory agents via antioxidative activities and anti-inflammatory effect.

Ameliorative Effect of Pu-erh Tea on DSS-induced Colitis through Regulation of NF-κB Activation in Mice

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.248-254
    • /
    • 2021
  • Ulcerative colitis (UC), chronic inflammatory bowel disease, is characterized by severe inflammation in the colon. Tea is one of the most popular beverages consumed worldwide. Pu-erh tea, a unique Chinese tea produced by microbial activities, possesses a broad range of health-promoting effects, including anti-aging, anti-Alzheimer's disease, antioxidation and anti-obesity. However, the inhibitory effect of Pu-erh tea on intestinal inflammation and the underlying mechanism remain unclear. The present study was designed to evaluate the regulatory effect of Pu-erh tea extract (PTE) on dextran sulfate sodium (DSS)-induced colitis clinical signs by analyzing the weight loss and colon length in mice. The inhibitory effects of PTE on inflammatory mediators, such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) were also determined in DSS-treated colitis tissue. We observed that PTE treatment significantly inhibited the DSS-induced clinical symptoms of weight loss, decrease,in colon length, and colon tissue damage in mice. Moreover, PTE attenuated the DSS-induced levels of IL-6 and TNF-α in colon tissue. We also demonstrated the anti-inflammatory mechanism of PTE by suppressing the activation of NF-κB in DSS-treated colon tissues. Collectively, the findings provide experimental evidence that PTE may be effective in preventing and treatment of intestinal inflammatory disorders, including UC.

The Experimental Study on Anti-oxidant and Anti-inflammatory Effect Hyulbuchukeotanggamibang (HBCT) (혈부축어탕가미방(血府逐瘀湯加味方)의 염증(炎症) 병리(病理) 인자(因子)와 산화력(酸化力) 손상(損傷)에 미치는 영향)

  • Han, Hye-Suk;Lim, Hyun-Jung;Shin, Sun-Mi;Kim, Soo-Min;Lee, Jung-Eun;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.1
    • /
    • pp.99-116
    • /
    • 2008
  • Purpose: This study was performed to evaluate anti-inflammatory effects of Hyulbuchukeotanggamibang water extract (HBCT). Methods: In the study of anti-inflammatory effects, HBCT was investigated using cultured cells and a murine models. As for the parameters of inflammation, levels of several inflammatory cytokines and chemical mediators which are known to be related to inflammation were determined in mouse lung fibroblast cells (mLFCs) and RAW264.7 cells. Results: Prior to the experiment, we investigated the cytotoxicity of HBCT. HBCT showed a safety in cytotoxicity on mLFCs. In experiment of anti-inflammatory effect, HBCT effected scavenging activity on DPPH free radical, superoxide dismutase and superoxide anion radical. HBCT inhibited $IL-1{\beta}$, IL-6, $TNF-{\alpha}$, COX-2 and NOS-II mRNA expression in a concentration-dependent manner in RAW264.7 cell line, and inhibited significantly $IL-1{\beta}$, IL-6, $TNF-{\alpha}$ production at $100{\mu}g/\;ml$ in a concentration-dependent manner. Conclusion: These results suggest that HBCT can be used for treating diverse female diseases caused by inflammation such as endometriosis, pelvic pain, cervicitis, pelvic inflammatory disease and pelvic tuberculosis and so forth.

  • PDF

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.

Anti-inflammatory Effects of Ponciri Fructus Extracts on Raw 264.7 Cells

  • Lee, Jin Wook;Jung, Hyuk-Sang;Sohn, Youngjoo;Kang, Yoon Joong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.91-91
    • /
    • 2018
  • Poncirus Fructus (PF) is obtained by drying the trifoliate orange fruit belonging to the Rutaceae family. In our country of medicine, PF has been used as a treatment of indigestion, allergy and inflammation. But Mechanism and medical data for PF is insignificant. Recently, the effect of the study PF of biological activity was reported, such as anti- thrombosis, anti-bacteria, anti-virus, anti- allergic. We investigated that the effect of PF on anti-inflammatory in murine macrophage-like cell line Raw264.7 cells. Our results show that the expression level of Nitric Oxide (NO) and Matrix-metallopeptidase-9 (MMP-9) significantly decreased. Moreover, to determine the expression level of pro-inflammatory cytokines such as Tumor Necrosis Factor ($TNF-{\alpha}$) and Interleukin-6 (IL-6) and the phosphorylation pattern of signaling molecules of mitogen-activated protein kinase (MAPK) family, we performed ELISA and westren blot in Raw264.7 cells. In addition, nuclear factor-kappa B ($NF-{\kappa}B$) pathway was confirmed. PF extract inhibited the production of $TNF-{\alpha}$ and IL-6. The extract suppressed the phosphorylation of ERK1/2, JNK, and p38 MAPK, and the nuclear translocation of $NF-{\kappa}B$ p65 in activated cells. Our results suggest that PF can be used as a potential therapeutic agent or functional food to relieve inflammation.

  • PDF

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun;Cho, Hui-Jin;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.675-682
    • /
    • 2022
  • Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

A Study on the Change in Inflammatory Activity of Macrophages and T Cells Using Pulsed Magnetic Field (펄스자기장(PMF)을 이용한 대식세포와 T 세포의 염증활성도 변화추이에 대한 연구)

  • Sojin Kim ;Hyunsook Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.324-328
    • /
    • 2023
  • Excessive inflammation in the body causes immune cells to release cytokines that damage normal tissues and cells, leading to rheumatoid arthritis and sepsis. Pulsed magnetic field(PMF) stimulation has many applications in the treatment of neurological, muscular disorders and pain. Therefore, in this study, we aim to investigate the effect of PMF stimulation on the regulation of excessive inflammation in the overall immune system. Macrophages, a primary immune cell, and T cells, a secondary immune cell, were co-cultured in the insert wells under the same conditions, and then inflammation was artificially induced. The changes in inflammatory activity following PMF stimulation were measured by pH and IL-6 concentration. After inflammation induction, both cells became more acidic and increased IL-6 expression, but after PMF stimulation, we observed improved acidification of macrophages and T cells and decreased IL-6 expression. Our results showed that infected macrophages activated T cells and that the recovery of excessive inflammatory response regulation after PMF stimulation proceeded more rapidly in macrophages. Therefore, this study suggests that PMF has a positive anti-inflammatory effect on the overall immune system and thus has the potential to be used as a non-invasive therapy for the treatment of chronic inflammatory diseases.

Antioxidant and Anti-inflammatory Effects of Fractions from Pruni persicae Flos (도화(桃花, Pruni persicae Flos) 분획물의 항산화 및 항염증 효과)

  • Lee, Jin-Young;An, Bong-Jeun
    • The Korea Journal of Herbology
    • /
    • v.27 no.5
    • /
    • pp.55-63
    • /
    • 2012
  • Objectives : The solvent extracts of Pruni persicae Flos were investigated for the activities of anti-oxidant and anti-inflammatory effects to apply as a functional ingredient for cosmetic products. Methods : In this study, the fractions of P. persicae Flos were extracted with 70.0% acetone and purified using Sephadex LH-20 column chromatography. As a result, eight fractions were isolated. We performed MTT assay, total polyphenol contents, DPPH free radical scavenging assay, SOD-like activity, xanthine oxidase inhibition assay, astringent activity assay, hyaluronidase inhibition assay and the production of nitric oxide. Results : For anti-oxidant effects, the electron donating ability of fraction (Fr.) 2-5, Fr.-8 isolated from P. persicae Flos was above 90.0% at 100 ppm respectively. The superoxide dismutase (SOD) - like activity of Fr.-5 isolated from P. persicae Flos was 92.1% at 1,000 ppm. The xanthine oxidase inhibitory effect of Fr.-6 isolated from P. persicae Flos was about 83.3% at 1,000 ppm. Hyaluronidase inhibition activity related to the anti-inflammation effect was 94.0% for Fr.-4 isolated from P. persicae Flos at 500 ppm. In the anti-inflammation effect, the Fr.-4 isolated from P. persicae Flos inhibited the generation of nitric oxide. Conclusions : All these findings suggested that the fractions of P. persicae Flos has a great potential as a cosmeceutical ingredient with a anti-oxidant and anti-inflammatory effects.

The Role of Intestinal Microflora in Anti-Inflammatory Effect of Baicalin in Mice

  • Jung, Myung-Ah;Jang, Se-Eun;Hong, Sung-Woon;Hana, Myung-Joo;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.20 no.1
    • /
    • pp.36-42
    • /
    • 2012
  • Baicalin, a main constituent of the rhizome of Scutellaria baicalensis, is metabolized to baicalein and oroxylin A in the intestine before its absorption. To understand the role of intestinal microflora in the pharmacological activities of baicalin, we investigated its anti-inflammatory effect in mice treated with and without antibiotics. Orally administered baicalin showed the anti-inflammatory effect in mice than intraperitoneally treated one, apart from intraperitoneally administered its metabolites, baicalein and oroxylin A, which potently inhibited LPS-induced inflammation. Of these metabolites, oroxylin A showed more potent anti-inflammatory effect. However, treatment with the mixture of cefadroxil, oxytetracycline and erythromycin (COE) significantly attenuated the anti-inflammatory effect of orally administered baicalin in mice. Treatment with COE also reduced intestinal bacterial fecal ${\beta}$-glucuronidase activity. The metabolic activity of human stools is significantly different between individuals, but neither between ages nor between male and female. Baicalin was metabolized to baicalein and oroxylin A, with metabolic activities of $1.427{\pm}0.818$ and $1.025{\pm}0.603$ pmol/min/mg wet weight, respectively. Baicalin and its metabolites also inhibited the expression of pro-inflammatory cytokines, TNF-${\alpha}$ and IL-$1{\beta}$, and the activation of NF-${\kappa}B$B in LPS-stimulated peritoneal macrophages. Of them, oroxylin A showed the most potent inhibition. Based on these findings, baicalin may be metabolized to baicalein and oroxylin A by intestinal microflora, which enhance its anti-inflammatory effect by inhibiting NF-${\kappa}B$ activation.