• Title/Summary/Keyword: Anti-collision light

Search Result 4, Processing Time 0.021 seconds

Design Improvement about Abnormal Lighting of Anti-Collision Light for a Rotary-wing Aircraft (회전익 항공기 충돌방지등의 이상점등에 대한 설계 개선)

  • Kim, Young Mok;Seo, Young Jin;Lee, Yoon Woo;Lee, Joo Hyung;Choi, Doo-Hyun
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.79-86
    • /
    • 2019
  • An anti-collision light of a rotary-wing aircraft is used for the purpose of preventing collision during the operation of an aircraft and is a key component to ensure flight safety. The anti-collision lights of the Korean Utility Helicopter (KUH) consist of upper and lower lights, and the power supply of anti-collision lights mounted on the aircraft. The anti-collision light is designed as a dual structure capable of brightness control and selective lighting. During the operation after delivery of the aircraft, abnormal lighting of anti-collision light occurred. In this paper, a comprehensive review of the aircraft system and component level was conducted to solve these phenomena at first. Then, the causes of anti-collision light anomalies were analyzed and the design changes are presented. The validity of design changes has been verified through the component and aircraft system ground/flight test.

Collision Reduction Using Modified Q-Algorithm with Moving Readers in LED-ID System

  • Huynh, Vu Van;Le, Nam-Tuan;Choi, Sun-Woong;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5A
    • /
    • pp.358-366
    • /
    • 2012
  • LED-ID (Light Emitting Diode - Identification) is one of the key technologies for identification, data transmission, and illumination simultaneously. This is the new paradigm in the identification technology environment. There are many issues are still now challenging to achieve high performance in LED-ID system. Collision issue is one of them. Actually this is the most significant issue in all identification system. LED-ID system also suffers from collision problem. In our system, collision occurs when two or more readers transmit data to tag at the same time or vice versa. There are many anti-collision protocols to resolve this problem; such as: Slotted ALOHA, Basic Frame Slotted ALOHA, Query Tree, Tree Splitting, and Q-Algorithm etc. In this paper, we propose modified Q-Algorithm to resolve collision at tag. The proposed protocol is based on Q-Algorithm and used the information of arrived readers to a tag from neighbor. The information includes transmitting slot number of readers and the number of readers that can be arrived in next slot. Our proposed protocol can reduce the numbers of collision slot and the successful time to identify all readers. In this paper our simulation and theoretical results are presented.

Indian Railways: Recent Trends in Control Accidents and Safety Measures for Passengers

  • Kumar, Katta Ashok
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.2 no.4
    • /
    • pp.48-55
    • /
    • 2014
  • Indian railways has been regularly in the news albeit for the wrong reasons. The frequency with which train accidents have been taking place has led to serious doubts in the public mind about the safety of rail travel and also the health of the network. Against this background, an attempt is made in this paper to assess the trends in railway accidents for the period from 2000-01 to 2009-10. The paper also highlighted the various measures taken by IR to prevent accidents to ensure safety to the public.

An Implementation of UWB IR System for Long Distance and High-precision Localization (장거리 고정밀 측위를 위한 UWB IR 시스템 구현)

  • Kim, Ki-Yun;Kim, Gil-Gyeom;Kim, Tae-Kwon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.87-95
    • /
    • 2016
  • Recently, the interests of the precise localization are rapidly increasing, which are linked to IoT(Internet of Things) sensors. The precise localization in indoor environment can be utilized in navigation, security, anti-collision, and various location based services etc. However, conventional positioning sensors, such as PIR, ultrasonic, microwave etc. are vulnerable to weather or insensitive to direction of subject movement or low precision performance. In this paper we implement a UWB-IR localization system for long distance and high-precision localization, which is not affected by temperature, light and weather. The proposed system was divided and designed by H/W, Antenna, S/W parts, each of which was designed based on an accurate analysis and simulation. As a result, we can implemented and verified UWB IR system with precise localization performance.