• Title/Summary/Keyword: Anti-calbindin

Search Result 8, Processing Time 0.024 seconds

Immuno-Electron Microscopic Studies on the Distribution of Dopamine and $Calbindin-D_{28K}$ in the Optic lobes of Cephalopods (Todarodes pacificus and Octopus minor) inhabiting the Korean waters (한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽내 Dopamine 및 $Calbindin-D_{28K}$의 분포에 관한 면역전자현미경적 연구)

  • Han, Jong-Min;Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • In this study, we carried out immunostaining and immunogold labeling with rabbit anti-dopamine (TH) and rabbit anti-calbindin-$D_{28K}$ to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor inhabiting the Korean waters. The obtained results are as follow. In the immunostaining with anti-dopamine, only a few of the large amacrine cells in an the upper part of an outer granule cell layer and the cells forming the islands of medulla showed positive reaction in Todarodes pacificus, while $2{\sim}3$ cells in the upper and middle parts of an outer granule cell layer and more than 5 cells in the islands of medulla reacted positively in Octopus minor. For the case of anti-calbindin case, $2{\sim}3$ small amacrine cells in the upper portion of the outer granule cell layer and $1{\sim}2$ cells which are located in the lower part of an inner granule cell layer showed positive reaction in Todarodes pacificus, while, in Octopus minor, 4 cells in the outer granule cell layer reacted positively, no immunoreactive cell being found in the inner granule cell layer. As a result of performing the immunogold labeling, relative large number ($17{\sim}26$) of gold particles were labeled per $0.5{\mu}m^2$ of the cytoplasm of the cells which showed the immunoreactivity to the anti-dopamine and anti-calbindin in Todarodes pacificus, however, small number (10) of gold particles were labeled in Octopus minor, which reach only half of the number in the Todarodes pacificus.

Immunocytochemical Localization of Nitric Oxide Synthase-containing Neurons in Mouse and Rabbit Visual Cortex and Co-Localization with Calcium-binding Proteins

  • Lee, Jee-Eun;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.408-417
    • /
    • 2005
  • Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals.

Spontaneous Electrical Activity in Cerebellar Purkinje Neurons of Postnatal Rats

  • Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.355-366
    • /
    • 1997
  • Although cerebellar Purkinje cells display spontaneous electrical activity in vivo and in slice experiments, the mechanism of the spontaneous activity generation has not been clearly understood. The aim of this study was to investigate whether cerebellar Purkinje cells of postnatal rats generate spontaneous electrical activity without synaptic inputs. Dissociated cerebellar Purkinje cells were used for reducing synaptic inputs in the present study. Cerebellar Purkinje cells with dendrites were dissociated from postnatal rats using enzymatic treatment followed by mechanical trituration. Spontaneous electrical activities were recorded from dissociated cells without any stimulus using whole-cell patch clamp configuration. Two types, spontaneously firing or quiescent, of dissociated Purkinje cells were observed in postnatal rats. Both types of cells were identified as Purkinje cells using immunocytochemical staining technique with anti-calbindin after recording. Spontaneously active cells displayed two patterns of firing, repetitive and burst firings. Two thirds of dissociated Purkinje cells displayed repetitive firing and the rest of them did burst firing under same recording condition. Repetitive firing activities were maintained even after further isolation using either physical or pharmacological techniques. Neither high magnessium solution nor excitatory synaptic blockers, AP-5 and DNQX, block the spontaneous activity. These results demonstrate that spontaneous electrical activity of isolated cerebellar Purkinje cells in postnatal rats is generated by intrinsic membrane properties rather than synaptic inputs.

  • PDF

Immunohistochemical Localization of Anoctamin 1 in the Mouse Cerebellum

  • Park, Yong Soo;Jeon, Ji Hyun;Lee, Seung Hee;Paik, Sun Sook;Kim, In-Beom
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.110-116
    • /
    • 2018
  • Since a transmembrane protein, TMEM16A, also called anoctamin 1 (ANO1), was identified as a bona fide calcium ($Ca^{2+}$)-activated chloride ($Cl^-$) channel (CaCC), there have been many reports on its expression and function. However, limited information on ANO1 expression and function in the brain is still available. In this study, we tried to reexamine expression patterns of ANO1 in the mouse cerebellum and further characterize ANO1-expressing components by immunohistochemical analyses. Strong ANO1 immunoreactivity was observed as large puncta in the granule cell layer and weak to moderate immunoreactivities were observed as small puncta in the molecular and Purkinje cell layers. Double-label experiments revealed that ANO1 did not colocalize with cerebellar neuronal population markers, such as anti-calbindin and anti-NeuN, while it colocalized or intermingled with a presynaptic marker, anti-synaptophysin. These results demonstrate that ANO1 is mainly localized at presynaptic terminals in the cerebellum and involved in synaptic transmission and modulation in cerebellar information processing.

Neuroprotective Effects of Berberine in Neurodegeneration Model Rats Induced by Ibotenic Acid

  • Lim, Jung-Su;Kim, Hyo-Sup;Choi, Yoon-Seok;Kwon, Hyock-Man;Shin, Ki-Soon;Joung, In-Sil;Shin, Mi-Jung;Kim, Yun-Hee
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.203-209
    • /
    • 2008
  • Berberine, an isoquinoline alkaloid found in Coptidis Rhizoma(goldenthread) extract, has multiple pharmacological effects such as anti-inflammatory, antimicrobial and anti-ischemic effects. In the present study, we examined the effects of berberine on neuronal survival and differentiation in a hippocampal precursor cell line and in the memory deficient rat model. Berberine increased in a dose dependent manner the survival of hippocampal precursor cells as well as differentiated cells. In addition, berberine promoted neuronal differentiation of hippocampal precursor cells. In the memory deficient rat model induced by stereotaxic injection of ibotenic acid into entorhinal cortex(Ibo model), hippocampal cells were increased about 2.7 fold in the pyramidal layer of CA1 region and about 2 fold in the dentate gyrus by administration of berberine after 2 weeks of ibotenic acid injection. Furthermore, neuronal cells immunoreactive to calbindin were increased in the hippocampus and entorhinal cortex area by administration of berberine. Taken together, these results suggest that berberine has neuroprotective effect in the Ibo model rat brain by promoting the neuronal survival and differentiation.

Observation of Dendritic Spines of Purkinje Cell Using High-Voltage Electron Microscopy (고압전자현미경을 이용한 소뇌 조롱박세포 가지돌기가시 관찰)

  • Rhyu, Im-Joo;Lee, Kea-Joo;Suh, Young-Suk
    • Applied Microscopy
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The morphological features of neuronal dendritic spines are changed their shapes, sizes and density in response to physiological or pathological conditions . Therefore, exact analysis of spines warrants understanding of neuronal function. The size of the spine is at the borderline of resolution with light microscopy. High voltage electron microscopy Provide excellent resolution of the spines with proper stain techniques thanks to its higher resolution and penetration power. We evaluated more effective staining method for observing dendritic spines after labeling Purkinje cells with anti-calbindin 28 kD immunohistochemistry or Golgi staining methods. 4 fm thickness sections were observed with high voltage electron microscopy and some morphometric analyses were performed. Both Golgi staining and immunohistochemistry revealed the detail structures of the Purkinje cell such as soma, dendrites, and dendritic spines. High voltage electron micrographs with Golgi staining provide more precise morphology and are easy to measure. Average density of spine is $24.5{\pm}3.6/10{\mu}m$ and its length is $1.12{\pm}0.22{\mu}m$. For quantitative analysis of the spines, high voltage electron, micrographs with Golgi staining are more effective. This preliminary result is expected to be useful for further study of spine plasticity in various conditions.

  • PDF

Immunocytochemical Localization of Melanopsin-immunoreactive Neurons in the Mouse Visual Cortex (생쥐 시각피질에서 melanopsin을 가지는 신경세포의 면역조직화학적 위치)

  • Lee, Won-Sig;Noh, Eun-Jong;Seo, Yoon-Dam;Jeong, Se-Jin;Lee, Eun-Shil;Jeon, Chang-Jin
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • Melanopsin is an opsin-like photopigment found in the small proportion of photosensitive ganglion cells of the retina. It is involved in the regulation of the synchronization of the circadian cycle as well as in the control of pupillary light reflex. The purpose of the present study is to investigate whether melanopsin is also expressed in the other areas of the central visual system outside the retina. We have studied the distribution and morphology of neurons containing melanopsin in the mouse visual cortex with antibody immunocytochemistry. Melanopsin immunoreactivity was mostly present in neuronal soma, but not in nuclei. We found that melanopsin was present in a large subset of neurons within the adult mouse visual cortex with the highest density in layer II/III. In layer I of the visual cortex, melanopsin-immunoreactive (IR) neurons were rarely encountered. In the mouse visual cortex, the majority of the melanopsin-IR neurons consisted of round/oval cells, but was varied in morphology. Vertical fusiform and pyramidal cells were also rarely labeled with the anti-melanopsin antibody. The labeled cells did not show any distinctive distributional pattern. Some melanopsin-IR neurons in mouse visual cortex co-localized with nitricoxide synthase, calbindin and parvalbumin. Our data indicate that melanopsin is located in specific neurons and surprisingly widespread in visual cortex. This finding raises the need of the functional study of melanopsin in central visual areas outside the retina.

Mechanism of Ethanol-induced Purkinje Cell Death in Developing Rat Cerebellum: Its Implication in Apoptosis and Oxidative Damage

  • Song, Ji-Hoon;Kang, Ji-Hoon;Kang, Hee-Kyung;Kim, Kwang-Sik;Lee, Sung-Ho;Choi, Don-Chan;Cheon, Min-Seok;Park, Deok-Bae;Lee, Young-Ki
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.205-213
    • /
    • 2011
  • Ethanol treatment during the brain growth spurt period has been known to induce the death of Purkinje cells. The underlying molecular mechanisms and the role of reactive oxygen species (ROS) in triggering ethanol-induced Purkinje cell death are, however, largely unresolved. We undertook TUNEL staining, western blotting assay and immunohistochemistry for the cleaved forms of caspase-3 and -9, with calbindin D28K double immunostaining to identify apoptotic Purkinje cells. The possibility of ROS-induced Purkinje cell death was immunohistochemically determined by using anti-8-hydroxy-2'deoxyguanosine (8-OHdG), a specific cellular marker for oxidative damage. The results show that Purkinje cell death of PD 5 rat cerebellum following ethanol administration is mediated by the activation of caspase-3 and -9. However, unexpectedly, TUNEL staining did not reveal any positive Purkinje cells while there were some TUNEL-positive cells in the internal and external granular layer. 8-OHdG was detected in the Purkinje cell layers at 8 h, peaked at 12-24 h, but not at 30 h post-ethanol treatment. No 8-0HdG immunoreactive cells were detected in the internal and external granular layer. The lobule specific 8-OHdG staining patterns following ethanol exposure are consistent with that of ethanol-induced Purkinje cell loss. Thus, we suggest that ethanol-induced Purkinje cell death may not occur by the classical apoptotic pathway and oxidative damage is involved in ethanol-induced Purkinje cell death in the developing cerebellum.