• 제목/요약/키워드: Anti-Sway System

검색결과 81건 처리시간 0.027초

컨테이너 크레인 시스템의 하물중량 추정에 관한 연구 (A Study on the Estimation of Cargo Weight for Container Crane System)

  • 김환성;박흥수;김상봉
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.175-180
    • /
    • 1998
  • In container crane system, the variation of cargo weight have effect on the travelling and sway control of load. For precise travelling and/or anti-sway control of crane system, the cargo weight should be measured and considered with control algorithm. But, and added attachment for measuring the cargo weight put restraint upon the control freedom for travelling and anti-sway. In this paper, we propose an estimation method for cargo weight in container crane system by using observation technique. First of all, we model the container crane system as a bilinear system and transform this model into linear system with external disturbance model. Second, we propose a generalized type - disturbance estimation observer and set a disturbance model, where, the cargo weight is related with the sway of load, and the sway is represented as a periodic external disturbance. Lastly, by using simulation we verify that the proposed algorithm of disturbance estimation observer is effective to estimate the cargo weight, and it will be used with anti-sway control algorithm.

  • PDF

하이브리드 방식을 이용한 크레인의 안티스웨이 제어 (Anti-sway Control of Crane System using Hybrid Control Method)

  • 박흥수;박준형;이동훈;김상봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.559-562
    • /
    • 1995
  • In the crane control system, it is reguired that the travelling time of the crane must be reduced as much as possible and the swing must be stoped at the end point. In paper, we present a hybrid control method which include the optimal regulator and velocity pattern controller in order to make high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the liner time invariant state equation can be obtained. In order to experiment the crane control, we consider 1 over 10 of the gantry crane which is used in a port. As a result, the hybrid control method improve efficient anti-sway control more than conventional velocity pattern control. It is expected that the proposed system will make an important contribution to the industrial fields.

  • PDF

고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어 (Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion)

  • 박문수;좌동경;홍석교
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.582-590
    • /
    • 2007
  • 천정주행 크레인의 고속 권상작업 및 흔들림 억제 궤적추종을 위한 비선형 적응제어 방법을 제시한다. 천정주행 크레인의 흔들림 운동은 트롤리의 가속도. 권상로프의 길이 및 권상속도와 강하게 결합되어 있다. 이는 비간섭 제어 기반의 흔들림 억제 궤적추종 제어법칙을 설계하는데 있어 장애요인으로 작용한다. 이러한 문제를 해결하기 위해, 트롤리의 가속도와 권상속도의 영향을 최소화하는 방법으로 불확실성이 존재하는 경우에도 흔들림 운동의 궁극적 균일 유계성을 보장하는 퍼지 비선형 적응형 흔들림 억제 궤적추종제어법칙을 제안한다. 특히, 제안한 방법은 파라미터 변화. 외란 등을 포함한 시스템 불확실성을 퍼지 불확실성 관측기를 이용하여 보상한다. 따라서, 퍼지관측기의 근사화 오차가 영으로 수렴할 때 추종오차 및 흔들림 각도의 궁극적 한계치는 영으로 감소한다. 끝으로 제안한 방법의 성능검증을 위한 모의실험 견과를 제시한다.

크레인 무인 자동 운전 시스템 개발 (Development of Automatic Coil-Handling Crane Control System)

  • 최진태;신길재
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.126-133
    • /
    • 2004
  • Lots of researches and applications on the automated overhead cranes in shops have been done for some decades, but a few successful results are reported. Integrated crane control systems designed by famous engineering companies are still expensive and are not satisfactory in view of maintenance and reliability. A more reasonable control system fit to requirements of manufacturing industries is suggested in the study. The new deigned system has superior capabilities for anti-sway of rope and position control. The controller for automated operations is composed of a Linux-based PC for non real-time control and a high-speed PLC for hard real-time control. Some algorithms required for coil yard operations as well as main control algorithms such as reference position generation, position control and anti-sway control have been designed and fully tested on the new crane simulator. The designed crane control system showed satisfactory performance on position control accuracy and anti-sway of rope. The maximum positional error is 8mm and the maximum sway error is 0.1 degrees. The suggested control strategies have been successfully applied to the 10-1 crane in No. 4 CGL of in the Kwangyang Steel Works and in commercial operation.

  • PDF

ATC의 Anti-Sway를 위한 기구적 고찰 (A Study on a Structure of Obstacle Detection System of AGV for Port Automation)

  • 김두형;박경택;박찬훈;신영재
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.197-205
    • /
    • 2000
  • Productivity of container cranes and gantry cranes is influenced by the performance of crane hardware and cycle time. Cycle time in container handling is influenced by the path of containers and relative positioning of containers. So we have to minimize the sway of containers and spreaders to minimize relative positioning time. And sway minimization is influenced by the skill of workers in manual gantry cranes. In this paper, we will survey some anti-sway systems. Each system has some merits and some shortages. And we will show our choice and its experimental equipment which is under construction.

  • PDF

Anti-Sway에 관한 연구 (A Study on Anti-Sway of Crane using Neural Network Predictive PID Controller)

  • 손동섭;이진우;민정탁;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 춘계학술대회논문집
    • /
    • pp.219-227
    • /
    • 2002
  • In this paper, we designed neural network predictive PID controller to control sway happened in transfer of trolley for automatic travel control system. We include dynamic character of nonlinear system, and mathematical expression veny simple used neural network. When various establishment location and surrounding disturbance were approved based on mathematical modelling of crane, controller designed to become effective control location error and vibration angle of two control variables that simultaneously can predictive control. Neural network predictive PID controller produced parameter of PID controller using neural network self-tuner. Neural network self-tuner's input used crane's output and neural network predictive output. Neural network self-tuner using error back propagation algorithm. We analyzed control performance comparison through computer simulation when applied disturbance about sway of location and angle in transfer of crane. The results show that the proposed neural network predictive PID controller has better performances than general PID controller, neural network PID controller.

  • PDF

퍼지 관측기와 퍼지 가변구조제어를 이용한 천정주행 크레인의 적응형 흔들림 억제 궤적추종제어 (Adaptive Anti-Sway Trajectory Tracking Control of Overhead Crane using Fuzzy Observer and Fuzzy Variable Structure Control)

  • 박문수;좌동경;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.452-461
    • /
    • 2007
  • Adaptive anti-sway and trajectory tracking control of overhead crane is presented, which utilizes Fuzzy Uncertainty Observer(FUO) and Fuzzy based Variable Structure Control(FVSC). We consider an overhead crane system which can be decoupled into the actuated and unactuated subsystems with its own lumped uncertainty such as parameter uncertainties and external disturbance. First, a new method for anti-sway control using FVSC is proposed to improve the conventional method based on Lyapunov direct method, while a conventional trajectory tracking control law using feedback linearization is directly adopted. Second, FUO is designed to estimate one of the two lumped uncertainties which can compensate both of them, based on the fact that two lumped uncertainties are coupled with each other. Then, an adaptive anti-sway control is proposed by incorporating the proposed FVSC and FUO. Under the condition that the observation error is Uniformly Ultimately Bounded(UUB) within an arbitrarily shrinkable region, the overall closed-loop system is shown to be Globally Uniformly Ultimately Bounded(GUUB). In addition, the Global Asymptotic Stability(GAS) of it is shown under the vanishing disturbance assumption. Finally, the effectiveness of the proposed scheme has been confirmed by numerical simulations.

보조로프를 이용한 야드크레인의 안티스웨이 시스템 (The Anti-Sway System for Yard Crane Using Auxiliary Ropes)

  • 박찬훈;박경택;김두형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.526-529
    • /
    • 2002
  • The development of automated container terminal has been a hot issue for recent years. It's very natural because it's very important how many containers, how soon, and how precisely a container terminal can treat. A crane treats a very heavy container, maybe, no less than 20∼40 tons, thus most cranes use ropes to take up and land containers. But rope causes the sway of a container and this phenomenon is not avoided. On the ground of this, in most case how much skillful a driver is may affect the productivity of a yard or quay crane. Thus many researches have been concentrated on the development of the control algorithm for a crane which may be useful and robust enough to drive a crane without any human driver. Authors of this paper also are interested in this kind of research but we have been much more interested for years in the development of a mechanical structure which may cause much less sway than the existing cranes do. In this paper, we may introduce the basic structure of the developed anti-sway system.

  • PDF

하이브리드 방식을 이용한 크레인의 앤티스웨이 제어 (Anti-sway Control of Crane System Using Hybrid Control Method)

  • 박흥수;김환성;박준형;이동훈;김상봉
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.67-72
    • /
    • 1998
  • In crane control system, it is required that the travelling time of crane must be reduced as much as possible and there is no the swing of load at the end and starting points. In this paper, we present a hybrid control method which includes two control methods of the optimal regulator and the velocity pattern control in order to realize high performance of the anti-sway. To implement the control algorithm, the dynamic equation is linearlized at an equilibrium point, so that the linear time invariant state equation can be obtained. A 1/10 sized model crane of the usual gantry cranes is made and used to show the applicability of the developed hybrid control method. The effectiveness of developed hybrid control method is proved by experimental results which show us good performance for anti-sway control comparing to conventional velocity pattern control. Practically, it is expected that the proposed control system will make an important contribution to the automatic crane control system of the industrial fields.

  • PDF

Anti-sway and Position 3D Control of the Nonlinear Crane System using Fuzzy Algorithm

  • Lee, Tae-Young;Lee, Sang-Ryong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.66-75
    • /
    • 2002
  • The crane operation used fur transporting heavy loads causes a swinging motion with the loads due to the crane\`s acceleration and deceleration. This sway causes the suspension ropes to leave their grooves and can cause serious damage. Ideally, the purpose of a crane system is to transport loads to a goal position as soon as possible without any oscillation of the rope. Currently, cranes are generally operated based on expert knowledge alone, accordingly, the development of a satisfactory control method that can efficiently suppress object sway during transport is essential. The dynamic behavior of a crane shows nonlinear characteristics. When the length of the rope is changed, a crane becomes a time-varying system thus the design of an anti-sway controller is very difficult. In this paper, a nonlinear dynamic model is derived for an industrial overhead crane whose girder, trolley, and hoister move simultaneously. Furthermore, a fuzzy logic controller, based on expert experiments during acceleration, constant velocity, deceleration, and stop position periods is proposed to suppress the swing motion and control the position of the crane. Computer simulation is then used to test the performance of the fuzzy controller with the nonlinear crane model.