• Title/Summary/Keyword: Anti-Cancer Activities

Search Result 712, Processing Time 0.028 seconds

The effect of the mushrooms extract on the PSA expression in prostate cancer cells (버섯류 추출물이 전립선 암 세포 내 PSA 발현에 미치는 영향)

  • Kim, Eun-Kyung;Tang, Yujiao;Choi, Heeri;Choi, Eun-Ju
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.181-184
    • /
    • 2015
  • Mushroom have long been valued as highly nutritious and tasty foods in many societies throughout the world. It is known for biological activities including anti-inflammatory and anti-oxidative potential. However little is known about anti-cancer property. In this study, we investigated the anti-prostate cancer activity of mushrooms. For that, eight kinds of mushrooms such as, T. matsutake, S. crispa, G. lucidum-US, G. lucidum-AS, C. cardinalis-BR, G. frondosa, P. linteus, U. esculenta were extracted with hot water. Among them, three kinds of mushrooms including T. matsutake, G. lucidum-US and C. militaris-BR extracts inhibited prostate specific antigen (PSA) expression in prostate cancer cell, LNCaP. These results demonstrate that some of mushrooms inhibited PSA expression suggesting that the mushrooms might be a candidate for the treatment of prostate cancer.

Viscum Album Var Hot Water Extract Mediates Anti-cancer Effects through G1 Phase Cell Cycle Arrest in SK-Hep1 Human Hepatocarcinoma cells

  • Cruz, Joseph Flores dela;Kim, Yeon Soo;Lumbera, Wenchie Marie Lara;Hwang, Seong Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6417-6421
    • /
    • 2015
  • Viscum album var (VAV) also known as mistletoe, has long been categorized as a traditional herbal medicine in Asia. In addition to its immunomodulating activities, mistletoe has also been used in the treatment of chronic hepatic disorders in China and Korea. There are numerous reports showing that VAV possesses anti-cancer effects, however influence on human hepatocarcinoma has never been elucidated. In the present study, hot water extracts of VAV was evaluated for its potential anti-cancer effect in vitro. SK-Hep1 cells were treated with VAV (50-400ug/ml) for both 24 and 48 hours then cell viability was measured by cell counting kit-8 (CCK-8). Flow cytometry analysis was used to measure the proportion of SK-Hep1 in the different stages of cell cycle. RT-PCR and Western blot analysis were conducted to measure expression of cell cycle arrest related genes and proteins respectively. VAV dose dependently inhibited the proliferation of SK-Hep1 cells without any cytotoxicity with normal Chang liver cell (CCL-13). Flow cytometry analysis showed that VAV extract inhibited the cell cycle of SK-Hep1 cells via G1 phase arrest. RT-PCR and Western blot analysis both revealed that cyclin dependent kinase 2 (Cdk2) and cyclin D1 gene expression were significantly down regulated while p21 was upregulated dose dependently by VAV treatment. Combined down regulation of Cdk2, Cyclin D1 and up regulation of p21 can result in cell death. These results indicate that VAV showed evidence of anti-cancer activity through G1 phase cell cycle arrest in SK-Hep1 cells.

Cytokinetic Study of MCF-7 Cells Treated with Commercial and Recombinant Bromelain

  • Fouz, Nour;Amid, Azura;Hashim, Yumi Zuhanis Has-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6709-6714
    • /
    • 2013
  • Background: Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. Materials and Methods: This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Results: Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with $IC_{50}$ values of 5.13 ${\mu}g/mL$ and 6.25 ${\mu}g/mL$, respectively, compared to taxol with an $IC_{50}$ value of 0.063 ${\mu}g/mL$. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 $h^{-1}$ to 0.0059 $h^{-1}$ for commercial bromelain and to 0.0063 $h^{-1}$ for recombinant bromelain. Conclusions: Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

Apoptosis induced by water extracts of Nypa fruticans wurmb via a mitochondria-dependent pathway in human FaDu hypopharyngeal squamous carcinoma cells

  • Lee, Seul Ah;Choi, Mi Suk;Park, Bo-Ram;Kim, Jin-Soo;Kim, Chun Sung
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.160-167
    • /
    • 2021
  • Nypa fruticans Wurmb (NFW) contains a large amount of phenolic acid and flavonoids, and is popular as a superfood in Myanmar. NFW has various biological activities, such as anti-inflammatory, anti-oxidant, and neuroprotective properties; however, the anti-cancer effect of NFW have not been reported. In this study, we investigated the anticancer activity of water extracts of NFW (WeNFW) and the underlying mechanism in human FaDu hypopharyngeal squamous carcinoma cells. The WeNFW inhibited FaDu cell growth in a dose-dependent manner without affecting normal cells (L929), as determined by an MTT assay and Live and Dead assay. In addition, the concentrations of WeNFW without cytotoxicity (0.025, 0.05, and 0.1 mg/mL) inhibited wound healing and colony formation. Furthermore, WeNFW significantly induced apoptosis through the proteolytic cleavage of caspase-3 and -9, poly (ADP-ribose) polymerase, and downregulation of Bcl-2 and upregulation of Bax in FaDu cells, as determined by DAPI staining, FACS analysis, and western blot analysis. Taken together, these results suggest that WeNFW exhibits potent anti-cancer effects by suppressing the growth of oral cancer cells, wound healing and colony formation activity. Via mitrochondrial-dependent apoptotic pathways in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, WeNFW can provide a natural chemotherapeutic drug for oral cancer in humans.

Antioxidant and Anti-cancer Activities of Squash (Cucurbita moschata Duch.) Leaf Extract In vitro (호박잎 추출물의 in vitro 항산화 및 항암 효과)

  • Kwak, Youngeun;Ju, Jihyeung
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.770-776
    • /
    • 2013
  • The aim of this study was to investigate the antioxidant and anti-cancer activities of squash leaf extract (SLE) in vitro. The total polyphenol and flavonoid levels of SLE were 263.4 mg gallic acid equivalent/100 g and 73.6 mg quercetin equivalent/100 g, respectively. The radical-scavenging activity of SLE at the concentration of 300 ${\mu}g/mL$ was 69.4%. SLE significantly inhibited human cancer cell growth (by 60.6-87.9% in HCT116 colon cancer cells and by 73.4-86.4% in H1299 lung cancer cells at the concentrations of 37.5, 75, and 150 ${\mu}g/mL$) and attachment (by 28.4% in HCT116 and by 16.8% in H1299 at the concentration of 150 ${\mu}g/mL$). SLE also altered nucleus morphology and increased nuclear staining intensity (by 42.8-58.2% in HCT116 and by 25.5-32.9% in H1299 at the concentrations of 37.5 and 75 ${\mu}g/mL$), indicating its apoptosis-inducing activity. These results demonstrate the antioxidant and anti-cancer activities of SLE in vitro.

Effects of Costunolide Derived from Saussurea lappa Clarke on Apoptosis in AGS Stomach Cancer Cell Lines

  • Sun, Seung-Ho;Ko, Seong-Gyu
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.84-95
    • /
    • 2006
  • Costunolide is an active sesquiterpene lactone isolated from the root of Saussurea lappa Clarke and is known to exhibit a variety of biological activities, including anti-carcinogenic and anti-inflammatory effects. Nevertheless, the pharmacological pathways of costunolide have not yet been fully elucidated. In this study, its cytotoxic effects were examined using AGS gastric cancer cells. Its treatment resulted in apoptosis in a dose- and time-dependent manner. The effects were attributed to the regulation of pro-apoptotic molecules and suppression of anti-apoptotic molecules. These results suggest that costunolide may be a candidate to deal with gastric cancers by chemopreventive agents.

  • PDF

Inhibitory Effect of Ligularia Stenocephala on the Cancer Metastasis

  • Lee, Dong-Keon;Kim, Jin-Kyu;Kim, Jong-Soo;Park, Kyoung-Jae;Cha, Dong-Seok;Jeon, Hoon
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Ligularia stenocephala has been used as a traditional medicine for the treatment of asthma, arthritis, jaundice, and hyperpiesia. In this study, we investigated the anti-metastatic and hypnotic effects of the methanolic extract of L. stenocephala (MLS). Gelatin zymographic analysis revealed that MLS suppresses matrix metalloproteinase-2 (MMP-2) and MMP-9 activities in B16F10 cells. The gene expressions of MMPs were also down-regulated by MLS treatment in a dose-dependent manner. In addition, cancer cell invasion and migration were attenuated by MLS via suppression of NF-${\kappa}B$ activation. The in vivo lung metastasis of B16F10 melanoma cells was also inhibited by the treatment of MLS. These findings show that MLS has anti-metastatic properties, and, therefore, it might be applicable as a valuable anti-metastatic agent.

Curdione Inhibits Proliferation of MCF-7 Cells by Inducing Apoptosis

  • Li, Juan;Bian, Wei-He;Wan, Juan;Zhou, Jing;Lin, Yan;Wang, Ji-Rong;Wang, Zhao-Xia;Shen, Qun;Wang, Ke-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9997-10001
    • /
    • 2014
  • Background: Curdione, one of the major components of Curcuma zedoaria, has been reported to possess various biological activities. It thus might be a candidate anti-flammatory and cancer chemopreventive agent. However, the precise molecular mechanisms of action of curdione on cancer cells are still unclear. In this study, we investigated the effect of curdione on breast cancer. Materials and Methods: Xenograft nude mice were used to detect the effect of curdione on breast cancer in vivo; we also tested the effect of curdione on breast cancer in vitro by MTT, Flow cytometry, JC-I assay, and western blot. Results: Firstly, we found that curdione significantly suppressed tumor growth in a xenograft nude mouse breast tumor model in a dose-dependent manner. In addition, curdione treatment inhibited cell proliferation and induced cell apoptosis. Moreover, after curdione treatment, increase of impaired mitochondrial membrane potential occurred in a concentration dependent manner. Furthermore, the expression of apoptosis-related proteins including cleaved caspase-3, caspase-9 and Bax was increased in curdione treatment groups, while the expression of the anti-apoptotic Bcl-2 was decreased. Inhibitors of caspase-3 were used to confirm that curdione induced apoptosis. Conclusions: Overall, our observations first suggested that curdione inhibited the proliferation of breast cancer cells by inducing apoptosis. These results might provide some molecular basis for the anti-cancer activity of curdione.

Anticancer Activity of Novel Daphnane Diterpenoids from Daphne genkwa through Cell-Cycle Arrest and Suppression of Akt/STAT/Src Signalings in Human Lung Cancer Cells

  • Jo, Si-Kyoung;Hong, Ji-Young;Park, Hyen Joo;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.6
    • /
    • pp.513-519
    • /
    • 2012
  • Although the immense efforts have been made for cancer prevention, early diagnosis, and treatment, cancer morbidity and mortality has not been decreased during last forty years. Especially, lung cancer is top-ranked in cancer-associated human death. Therefore, effective strategy is strongly required for the management of lung cancer. In the present study, we found that novel daphnane diterpenoids, yuanhualine (YL), yuanhuahine (YH) and yuanhuagine (YG) isolated from the flower of Daphne genkwa (Thymelaeaceae), exhibited potent anti-proliferative activities against human lung A549 cells with the $IC_{50}$ values of 7.0, 15.2 and 24.7 nM, respectively. Flow cytometric analysis revealed that the daphnane diterpenoids induced cell-cycle arrest in the G0/G1 as well as G2/M phase in A549 cells. The cell-cycle arrests were well correlated with the expression of checkpoint proteins including the up-regulation of cyclin-dependent kinase inhibitor p21 and p53 and down-regulation of cyclin A, cyclin B1, cyclin E, cyclin dependent kinase 4, cdc2, phosphorylation of Rb and cMyc expression. In the analysis of signal transduction molecules, the daphnane diterpenoids suppressed the activation of Akt, STAT3 and Src in human lung cancer cells. The daphnane diterpenoids also exerted the potent anti-proliferative activity against anticancer-drug resistant cancer cells including gemcitabine-resistant A549, gefitinib-, erlotinib-resistant H292 cells. Synergistic effects in the growth inhibition were also observed when yuanhualine was combined with gemcitabine, gefitinib or erlotinib in A549 cells. Taken together, these findings suggest that the novel daphnane diterpenoids might provide lead candidates for the development of therapeutic agents for human lung cancers.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.