• 제목/요약/키워드: Anti-Adhesion

검색결과 443건 처리시간 0.028초

Diethyldithiocarbamate Suppresses an NF-κB Dependent Metastatic Pathway in Cholangiocarcinoma Cells

  • Srikoon, Pattaravadee;Kariya, Ryusho;Kudo, Eriko;Goto, Hiroki;Vaeteewoottacharn, Kulthida;Taura, Manabu;Wongkham, Sopit;Okada, Seiji
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4441-4446
    • /
    • 2013
  • Cholangiocarcinoma (CCA) is a tumor of biliary ducts, which has a high mortality rate and dismal prognosis. Constitutively activation of the transcription factor nuclear factor kappa-B (NF-${\kappa}B$) has been previously demonstrated in CCA. It is therefore a potential target for CCA treatment. Effects of diethyldithiocarbamate (DDTC) on NF-${\kappa}B$-dependent apoptosis induction in cancer have been reported; however, anti-metastasis has never been addressed. Therefore, here the focus was on DDTC effects on CCA migration and adhesiond. Anti-proliferation, anti-migration and anti-adhesion activities were determined in CCA cell lines, along with p65 protein levels and function. NF-${\kappa}B$ target gene expression was determined by quantitative RT-PCR. DDTC inhibited CCA cell proliferation. Suppression of migration and adhesion were observed prior to anti-CCA proliferation. These effects were related to decreased p65, reduction in NF-${\kappa}B$ DNA binding, and impaired activity. Moreover, suppression of ICAM-1 expression supported NF-${\kappa}B$-dependent anti-metastatic effects of DDTC. Taken together, DDTC suppression of CCA migration and adhesion through inhibition of NF-${\kappa}B$ signaling pathway is suggested from the current study. This might be a promising treatment choice against CCA metastasis.

Rat에서 carboxymethylcellulose, chondroitin 및 carboxymethylchitosan의 복강유착방지 효과의 비교 (Comparative Effect of Carboxymethylcellulose, Chondroitin, and Carboxymethylchitosan on Preventing Intraperitoneal Adhesion Formation in Rats)

  • 권영삼;장광호
    • 한국임상수의학회지
    • /
    • 제24권3호
    • /
    • pp.379-383
    • /
    • 2007
  • This study was performed to compare the effects of carboxymethylcellulose (CMCE), chondroitin sulfate (Chondron), and carboxymethylchitosan (CMCH) on preventing intraperitoneal adhesion. As a result, the tensile strength of adhesions formed between the parietal peritoneum and the ileal serosa was significantly decreased in the groups of three different kinds of anti-adhesive agents. The distance of adhesion site was slightly increased in the treatment groups comparing control group. In the CMCH group, the inflammatory cell infiltration, collagen hyperplasia, and neovascularization were significantly lower than those of control group. It was observed that the damage at intestinal serosa was significantly decreased in the chondron and CMCH groups comparing control group. Therefore CMCH may be useful as a anti-adhesive agent in the prevention of intraperitoneal adhesion in rats.

A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

  • Choi, Sunga;Park, Myoung Soo;Lee, Yu Ran;Lee, Young Chul;Kim, Tae Woo;Do, Seon-Gil;Kim, Dong Seon;Jeon, Byeong Hwa
    • Nutrition Research and Practice
    • /
    • 제7권1호
    • /
    • pp.9-14
    • /
    • 2013
  • Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-${\alpha}$)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 ${\mu}g/ml$ to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-${\alpha}$-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-${\alpha}$-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-${\alpha}$-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis.

Heparin Attenuates the Expression of TNF $\alpha$-induced Cerebral Endothelial Cell Adhesion Molecule

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Seo, Gi-Ho;Lee, Jin-U;Kim, Joo-Hee;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.231-236
    • /
    • 2008
  • Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis factor $\alpha$ ($TNF{\alpha}$)-induced and nuclear factor kappa B (NF-${\kappa}B$)-dependent expression of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are crucial for inflammatory responses. Heparin selectively interfered with NF-${\kappa}B$ DNA-binding activity in the nucleus, which is stimulated by $TNF{\alpha}$. In addition, non-anticoagulant 2,3-O desulfated heparin (ODS) prevented NF-${\kappa}B$ activation by $TNF{\alpha}$, suggesting that the anti-inflammatory mechanism of heparin action in CECs lies in heparin's ability to inhibit the expression of cell adhesion molecules, as opposed to its anticoagulant actions.

Contact Transfer Printing Using Bi-layer Functionalized Nanobio Interface for Flexible Plasmonic Sensing

  • Lee, Jihye;Park, Jiyun;Lee, Junyoung;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2014
  • In this paper, we present a fabrication method of functionalized gold nanostructures on flexible substrate that can be implemented for plasmonic sensing application. For biomolecular sensing, many researchers exploit unconventional lithography method like nanoimprint lithography (NIP), contact transfer lithography, soft lithography, colloidal transfer printing due to its usability and easy to functionalization. In particular, nanoimprint and contact transfer lithography need to have anti-adhesion layer for distinctive metallic properties on the flexible substrates. However, when metallic thin film was deposited on the anti-adhesion layer coated substrates, we discover much aggravation of the mold by repetitive use. Thus it would be impossible to get a high quality of metal nanostructure on the transferred substrate for developing flexible electronics based transfer printing. Here we demonstrate a method for nano-pillar mold and transfer the controllable nanoparticle array on the flexible substrates without an anti-adhesion layer. Also functionalization of gold was investigated by the different length of thiol applied for effectively localized surface plasmonic resonance sensing. First, a focused ion beam (FIB) and ICP-RIE are used to fabricate the nanoscale pillar array. Then gold metal layer is deposited onto the patterned nanostructure. The metallic 130 nm and 250 nm nanodisk pattern are transferred onto flexible polymer substrate by bi-layer functionalized contact imprinting which can be tunable surface energy interfaces. Different thiol reagents such as Thioglycolic acid (98%), 3-Mercaptopropionic acid (99%), 11-Mercaptoundecanoic acid (95%) and 16-Mercaptohexadecanoic acid (90%) are used. Overcoming the repeatedly usage of the anti-adhesion layer mold which has less uniformity and not washable interface, contact printing method using bi-layer gold array are not only expedient access to fabrication but also have distinctive properties including anti-adhesion layer free, functionalized bottom of the gold nano disk, repeatedly replicate the pattern on the flexible substrate. As a result we demonstrate the feasibility of flexible plasmonic sensing interface and anticipate that the method can be extended to variable application including the portable bio sensor via mass production of stable nanostructure array and other nanophotonic application.

  • PDF

혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과 (Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells)

  • 이윤정;윤정주;김혜윰;안유미;홍미현;손찬옥;나세원;이호섭;강대길
    • 대한한방부인과학회지
    • /
    • 제32권3호
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

쥐 맹장/복벽 찰과상 모델에서 Sodium Hyaluronate/sodium Carboxymethyl Cellulose 멤브레인의 수술 후 유착방지에 대한 유효성 평가 (Evaluation on Effectiveness for Preventing Post Surgical Adhesion of Sodium Hyaluronate/Sodium Carboxymethyl Cellulose (HA/CMC) Membrane in Rat Cecum/Peritonium Model)

  • 이영무;이영우
    • 멤브레인
    • /
    • 제15권3호
    • /
    • pp.213-223
    • /
    • 2005
  • 본 연구에서는 히알루론산나트륨/카르복시메틸셀룰로오스나트륨(HA/CMC)으로 구성된 유착방지 막을 제조하였고, 쥐에서 유착방지용에 대한 효과를 평가하였다. 유착방지 막은 HA/CMC 용액을 동결건조한 후 1-에틸-3-(3-디메틸아미노프로필)카보디이미드 (EDAC)로 가교하여 제조하였다. Sprague-Dawley쥐의 맹장/복벽 찰과상 모델에서 복부 중앙선 절개 후 장막과 복벽을 bone burr로 $1\times2\;(cm^2)$ 크기로 찰과상을 만들고, 상처 면 주위의 3곳을 봉합사로 고정시켰다. 상처난 장을 실험군의 경우 HA/CMC 막으로 덮어주었으며, 대조군은 아무처치도 하지 않은 상태로 복벽을 마주보게 하였다. 대조군의 대부분은 수술 후 7, 14, 21, 28일에 유착정도 3 이상을 나타내었고, 반면 실험군의 $60\~70\%$는 수술 후 14, 21, 28일에 유착정도 2 이하를 나타내었다. 이는 유착세기에서도 유사하였다. 일반적으로 유착정도와 유착세기는 수술 후 14일까지 점차 증가하였고, 수술 후 21일에는 거의 동일하거나 약간 증가하였으며, 28일째에는 감소하였다. 대조군은 유착정도와 유착세기, 유착면적에서 높은 수치를 나타내었다. 이 유착방지막은 수술 후 유착방지에서 좋은 임상결과를 나타낼 수 있을 것으로 기대된다.

Antioxidant and Anti-inflammatory Activities of Ethanol Extract from Leaves of Cirsium japonicum

  • Lee, Je-Hyuk;Choi, Soo-Im;Lee, Yong-Soo;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.38-45
    • /
    • 2008
  • Antioxidant and anti-rheumatoid activities of Cirsium japonicum leaf extract (CJLE) were investigated in this study. CJLE had similar DPPH radical scavenging activity and reducing power to ascorbic acid and several flavonoids. Rheumatoid arthritis (RA) is a chronic inflammatory tissue-destructive disease, partly related with functions of hyaluronidases (HAases) and collgenases. CJLE ($1,000\;{\mu}g/mL$) had approximately 60.7 and 31.9% inhibition of HAase and collagenase activity, respectively. Also, CJLE inhibited lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner, and CJLE ($1,000\;{\mu}g/mL$) suppressed approximately 70% of LPS-induced nitrite production effectively in RAW 264.7 macrophage cells. CJLE had inhibitory effects on the adherence of monocytic THP-1 to human umbilical vein endothelial cell (HUVEC) monolayers to the basal level. Inhibitory effect of CJLE on the adhesion was caused by suppression of tumor necrosis factor-a-upregulated expression of vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin. We expect that CJLE may alleviate the inflammatory process in rheumatoid synovium, and these findings will raise the possibility of the usage of C. japonicum as a traditional pharmaceutical of anti-rheumatoid arthritis.

해백청혈플러스(AMCP)의 항산화 및 항염증 작용을 통한 죽상동맥경화 억제 효과 (Effects of Antioxidant and Anti-inflammatory Activity of Allii Macrostemonis Bulbus Cheonghyeol Plus on the Inhibition of Atherosclerosis)

  • 채인철;유주영;유호룡;김윤식;설인찬
    • 동의생리병리학회지
    • /
    • 제34권3호
    • /
    • pp.126-135
    • /
    • 2020
  • The purpose of this study was to investigate the antioxidant, anti-inflammatory and anti-cellular adhesion molecules effects of Allii Macrostemonis Bulbus, Artemisiae Capillaris Herba, Curcumae Radix, Crataegi Fructus, Salviae Militiorrhizae Radix complex extract(AMCP) on the inhibition of atherosclerosis in HUVEC. We measured DPPH radical scavenging activity and ABTS radical scavenging activity of AMCP to evaluate its antioxidant effect. And we also measured the expression level of NF-κB, IκBα, ERK, JNK, p38 proteins to evaluate its anti-inflammatory effect. Lastly, we measured the expression level of MCP-1, ICAM-1, VCAM-1 mRNA and their level to evaluate its anti-celluar adhesion molecules. AMCP did not show any cytotoxicity in HUVEC within the concentraion tested except for a concentration of 400 ㎍/㎖. AMCP increased the DPPH radical scavenging activitiy and ABTS radical scavenging activity in HUVEC as the concentration of AMCP rises. AMCP significantly reduced NF-κB, IκBα, JNK, ERK and p38 protein expression in HUVEC compared to control group. AMCP significantly reduced MCP-1, ICAM-1, VCAM-1 gene expresion in HUVEC compared to control group. AMCP significantly decreased the levels of MCP-1, ICAM-1, VCAM-1 in HUVEC compared to control group. These results suggest that AMCP has effects on antioxidation, anti-inflammation and anti-cellular adhesion molecule, which helps the treatment and prevention of dyslipidemia and atherosclerosis.