• Title/Summary/Keyword: Anti Vibration Bar

Search Result 18, Processing Time 0.024 seconds

Dynamic Modeling and Pressure Control of Piezoactuator Based Valve Modulator Integrated with Flexible Flapper (유연 플래퍼와 연계한 압전 밸브 모듈레이터의 동적 모델링 및 압력 제어)

  • Jeon, Jun-Cheol;Maeng, Young-Jun;Sohn, Jung Woo;Choi, Seung-Bok;Lee, Soo-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.976-982
    • /
    • 2010
  • This paper proposes a novel type of pressure control mechanism which can apply to vehicle ABS (anti-lock braking system) utilizing the piezoactuator based valve system associated with the pressure modulator. As a first step, a flapper-nozzle of a pneumatic valve system is devised by integrating the piezoacuator to the flexible beam structure. The dynamic modeling of the valve system is then undertaken and subsequently the governing equation of pressure control is derived considering the pressure modulator. A sliding mode controller is designed in order to achieve accurate pressure tracking control in the presence of actuator uncertainty as well as input pressure variation. It is shown through computer simulation that an accurate pressure tracking for sinusoidal motion whose magnitude is 40 bar is achieved by utilizing the proposed pressure control mechanism.

An Interaction Effect of Eddy Current Signals Due to the Neighboring Signal Sources (근접한 두 신호원에 의한 와전류 신호의 간섭 효과)

  • Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • The multi-frequency eddy current technique has been used for evaluation of various type of defects in tubings. However, this technique is not sufficient to detect and evaluate the defect in tubings if the defect is located in the geometrically complicated area(e. g. tube support plate, anti-vibration bar, tubesheet area) and mixing residue signal is significant to the defect signal. In order to improve the reliability of the multi-frequency eddy current technique, the effect of the interaction of mixing residue after frequency mixing with a function of distances between the defect and the tube support plate boundary has been analyzed theoretically. The experimental results have been discussed with the theoretical developments. The calculation shows the interaction between the two neighboring signal sources could be significant within the range of approximately 1.0mm with the experimental condition.

  • PDF

Driving Characteristic of Ultrasonic Linear Motor With V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.425-429
    • /
    • 2007
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 18 % under the speed 0.14 m/s, thrust 345 gf and preload 280 gf, operating frequency is 57.6 kHz.

Sensitivity Analysis in the Estimation of Complex Elastic Modulus of Viscoelastic Materials by Transmissibility Measurements (전달율 측정에 의한 점탄성재료의 복소탄성계수 추출시의 민감도 분석)

  • 안태길;허진욱;김광준
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.99-106
    • /
    • 1992
  • The complex Young's modulus of a viscoelastic material can be obtained as a function of frequency from the measurements of relative motion between the two ends of a bar-type specimen. Non-resonance method is usually used to obtain the complex Young's modulus over wide range of frequency including resonance points, while in resonance method information at resonance frequencies only is used. However, the complex Young's modulus obtained by the non-resonance method is often unreliable in the anti-resonance frequency regions because of the measurement noise problems. In this study, the effects of the random measurement errors on estimating the complex Young's modulus are studied in the aspect of sensitivity, and how to obtain the reliable frequency region for a given measurement error level is shown. The usable frequency regions in determining the complex Young's modulus are represented by a non-dimensional parameter formed with the wave length and specimen length.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Lee, Jeong-Kun;Park, Chi-Yong;Kim, Tae-Ryong;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

Wear Progress Model by Impact Fretting in Steam Generator Tube (충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델)

  • Park, Chi-Yong;Lee, Jeong-Kun;Kim, Tae-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

Driving Characteristic of Ultrasonic Linear Motor with V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.274-275
    • /
    • 2006
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. Linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 17 [%] under the speed 0.14 [m/s], thrust 345 [gf] and preload 280 [gf], operating frequency is 57.6 [kHz].

  • PDF

Impact performance study of filled thin-walled tubes with PM-35 steel core

  • Kunlong Tian;Chao Zhao;Yi Zhou;Xingu Zhong;Xiong Peng;Qunyu Yang
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.75-86
    • /
    • 2024
  • In this paper, the porous metal PM-35 is proposed as the filler material of filled thin-walled tubes (FTTs), and a series of experimental study is conducted to investigate the dynamic behavior and energy absorption performance of PM-35 filled thin-walled tubes under impact loading. Firstly, cylinder solid specimens of PM-35 steel are tested to investigate the impact mechanical behavior by using the Split Hopkinson pressure bar set (SHP); Secondly, the filled thin-walled tube specimens with different geometric parameters are designed and tested to investigate the feasibility of PM-35 steel applied in FTTs by the orthogonal test. According to the results of this research, it is concluded that PM-35 steel is with the excellent characteristics of high energy absorption capacity and low yield strength, which make it a potential filler material for FTTs. The micron-sizes pore structure of PM-35 is the main reason for the macroscopic mechanical behavior of PM-35 steel under impact loading, which makes the material to exhibit greater deformation when subjected to external forces and obviously improve the toughness of the material. In addition, PM-35 steel core-filled thin-wall tube has excellent energy absorption ability under high-speed impact, which shows great application potential in the anti-collision structure facilities of high-speed railway and maglev train. The parameter V0 is most sensitive to the energy absorption of FTT specimens under impact loading, and the sensitivity order of different variations to the energy absorption is loading speed V0>D/t>D/L. The loading efficiency of the FTT is affected by its different geometry, which is mainly determined by the sleeve material and the filling material, which are not sensitive to changes in loading speed V0, D/t and D/L parameters.