• Title/Summary/Keyword: Anthropogenic soil

Search Result 188, Processing Time 0.033 seconds

Soil Classification of Anthropogenic Soils in a Remodeled Area Using Soil Taxonomy and World Reference Base for Soil Resources

  • Lee, Seung-Been;Chun, Hyen-Chung;Cho, Hyun-Jun;Hyun, Byung-Keun;Song, Kwan-Cheol;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.536-541
    • /
    • 2013
  • In Soil Taxonomy system, anthropogenic soils are still classified as Entisols since the International Classification Committee for Anthropogenic Soils is in the process of classifying anthropogenic soils as new orders. In reality, it is difficult to characterize anthropogenic soils because Soil Taxonomy (ST) system does not distinguish between natural and anthropogenic Entisols. On the other hand, World Reference Base for soil resources (WRB) considers human impacts on soils and contains an independent category of anthropogenic soils, which makes easier to understand anthropogenic soil characteristics than Soil Taxonomy system. A remodeled paddy field (Gasan) was selected to classify by ST and WRB. Soil samples were taken to analyze chemical and physical properties. Based on the results of the analyses, the ST system classified Gasan as coarse loamy, mixed, mesic, Aquic Udorthents while the WRB did as Stagnic Urbic Technosols (Oxyaquic, Arenic). As a conclusion, the WRB classification information of the anthropogenic provides more detail characteristics of the anthropogenic soils.

Characteristics of Anthropogenic Soil Formed from Paddy near the River

  • Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hyun, Byung-Keun;Kim, Keun-Tae;Lee, Chang-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2016
  • Anthropogenic soil in cropland is formed in the process of subsoil reversal and the refill of soil into cropland. However, there was little information on the chemical properties within soil profiles in anthropogenic soil under rice paddy near the river. In this study, we investigated the chemical properties within soil profiles in the anthropogenic soil located at 4 sites in Gumi, Kimhae, Chungju, and Euiseong to compare with the natural paddy soil near the river. Among particle sizes, the sand content decreased under soil profiles but the silt and clay contents increased compared to the natural paddy soil in soil profiles. Organic matter content in topsoil of anthropogenic soil was lower than in that of natural soil, which was shown the contrary tendency within soil profiles. Also, the soil pH, available $P_2O_5$, and exchangeable cations were higher in anthropogenic soil compared to natural paddy soil at topsoil, which was maintained these tendency into soil depth. Nutrients may be equally distributed in anthropogenic soil during the process of refill in paddy soil near the river. This results indicated that anthropogenic soil would contribute to carbon sequestration, the mitigation of compaction, and reduction of fertilizer application in paddy soil. Therefore, characteristics of anthropogenic soil can be used for the soil management in cropland.

Classification of Anthropogenic Soil "Ingwan" Series

  • Sonn, Yeon-Kyu;Cho, Hyun-Jun;Hyun, Byung-Keun;Shin, Kook-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.535-541
    • /
    • 2015
  • Korean soil classification system is based on the US soil taxonomy. This study aimed to understand and inform the soil taxonomy of 2010 and 2014 US soil classification systems. Ingwan series belonged to anthropogenic soil was classified to coarse loamy over sandy, mixed, mesic family of Aquic Udorthents based on the soil taxonomy of 2010 and coarse loamy over sandy, mixed, mesic family of Anthroportic Udorthents based on the soil taxonomy of 2014. An anthropogenic soil is increasing in Korea. Considering the domestic relationship depending on US soil taxonomy, it is important to be well-informed of the taxonomy and apply the updated taxonomy system properly to the domestic soil classification. This study of defining the anthropogenic soil will provide useful information on soil management and its utilization.

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

Computer Tomography as a Tool for Physical Analysis in an Anthropogenic Soil

  • Chun, Hyen Chung;Park, Chan Won;Sonn, Yeon Kyu;Cho, Hyun Joon;Hyun, Byung Keun;Song, Kwan Cheol;Zhang, Yong Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Human influence on soil formation has dramatically increased as the development of human civilization and industry. Increase of anthropogenic soils induced research of those soils; classification, chemical and physical characteristics and plant growth of anthropogenic soils. However there have been no reports on soil pore properties from the anthropogenic soils so far. Therefore the objectives of this study were to test computer tomography (CT) to characterize physical properties of an anthropogenic paddy field soil and to find differences between natural and anthropogenic paddy field soils. Soil samples of a natural paddy field were taken from Ansung, Gyeonggi-do (Ansung site), and samples of an anthropogenic paddy field were from Gumi in Gyeongsangnam-do (Gasan) where paddy fields were remodeled in 2011-2012. Samples were taken at three different depths and analyzed for routine physical properties and CT scans. CT scan provided 3 dimensional images to calculate pore size, length and tortuosity of soil pores. Fractal analysis was applied to quantify pore structure within soil images. The results of measured physical properties (bulk density, porosity) did not show differences across depths and sites, but hardness and water content had differences. These differences repeated within the results of pore morphology. Top soil samples from both sites had greater pore numbers and sizes than others. Fractal analyses showed that top soils had more heterogeneous pore structures than others. The bottom layer of the Gasan site showed more degradation of pore properties than ploughpan and bottom layers from the Ansung site. These results concluded that anthropogenic soils may have more degraded pore properties as depth increases. The remodeled paddy fields may need more fundamental remediation to improve physical conditions. This study suggests that pore analyses using CT can provide important information of physical conditions from anthropogenic soils.

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Soil Physico-chemical Properties by Land Use of Anthropogenic Soils Dredged from River Basins

  • Park, Jun-Hong;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.341-346
    • /
    • 2016
  • This study was conducted to analyze soil physico-chemical properties of agricultural land composed from the river-bed sediments. We investigated the changes of soil physico-chemical properties at 30 different sampling sites containing paddy, upland and plastic film house from 2012 to 2015. pH, exchangeable calcium and magnesium decreased gradually in paddy soils during the four years, whereas the available $P_2O_5$, exchangeable Ca, Mg and EC increased in upland and plastic film house soil. For the soil physical properties, bulk density and hardness of topsoil were $1.47g\;cm^{-3}$ and 21.5 mm and those of subsoil were $1.71g\;cm^{-3}$ and 25.7 mm in paddy soils. In upland soils, bulk density and hardness of topsoil were $1.48g\;cm^{-3}$ and 15.9 mm and those of subsoil were $1.55g\;cm^{-3}$ and 16.9 mm. In plastic film house soils, bulk density and hardness of topsoil were $1.42g\;cm^{-3}$ and 14.4 mm and those of subsoil were $1.40g\;cm^{-3}$ and 18.5 mm, respectively. The penetration hardness was higher than 3 MPa below soil depth 20 cm, and it is impossible to measure below soil depth 50 cm. As these results, in agricultural anthropogenic soils dredged from river basins, the pH, amount of organic matter and exchangeable cations decreased and soil physical properties also deteriorated with time. Therefore, it is needed to apply more organic matters and suitable amount of fertilizer and improve the soil physical properties by cultivating green manure crops, deep tillage, and reversal of deep soils.

Hydrogeochemistry of groundwaters in Boeun Area, Korea

  • Park, Seong-Sook;Yun, Seong-Taek;Kim, Kyoung-Ho;Kweon, Jang-Soon;Sung, Ig-Hwan;Lee, Byeong-Dae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.519-519
    • /
    • 2003
  • We performed a hydrochemical study on a total of 89 bedrock groundwaters collected from preexisting wells (30 to 300 m deep) in the Boeun area. Hydrochemical data showed significant variations in the area, due to varying degrees of anthropogenic pollution. The waters were mostly enriched in Ca and HCO$_3$ but locally contained significant concentrations of anthropogenic constituents in the general order of Cl >NO$_3$>SO$_4$. In particular, about 11% of the examined wells exceeded the drinking water standard with respect to nitrate. We consider that aquifers in the area are locally highly susceptible to the contamination related to agricultural activities. Diagrams showing the relationships between the summation of cations (∑cations) and the concentration of several anions with different origin (natural versus anthropogenic) were used to estimate the relative role of anthropogenic contamination. A good correlation was observed for the relationship between ∑cations and bicarbonate, indicating that water-rock interaction (namely, hydrolysis of silicate minerals) is most important to control the water quality. Thus, we made an assumption that the equivalent of dissolved cations for a water should be equal to the alkalinity, if the chemistry were controlled solely by a set of natural weathering reactions. If we excluded the equivalent quantities of cations and bicarbonate (natural origin) from the acquired data for each sample, the remainder therefore could be considered to reflect the degree of anthropogenic contamination. Finally, we performed a multiple regression approach for hydrochemical data using the ∑cations as a dependent variable and the concentration data of each anion (natural or anthropogenic) as an independent variable. Using this approach, we could estimate the relative roles of anthropogenic and natural processes. Rather than the conventional evaluation scheme based on water quality criteria, this approach will be more useful and reasonable for the evaluation of groundwater quality in a specific region and also can be used for planning appropriate protection and remedial actions.

  • PDF

Water chemistry controlled by drainage basin: Case study in the Han River, South Korea

  • Ryu Jong-Sik;Lee Gwang-Sik;Sin Hyeong-Seon;An Gyu-Hong;Jang Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.405-407
    • /
    • 2005
  • To evaluate the main hydrogeochemical characteristics, river waters are investigated using element리 and isotopic compositions in South Korea. In this area, the chemical compositions are mostly classified into three groups; $Ca^{2+}-{HCO_3}^-$ type, $Ca^{2+}-Cl^{-}-{NO_3}^-$ type and $Ca^{2+}-{HCO_3}^{-}-Cl^{-}-{NO_3}^-$ type. These types are affected by two major factors: water-rock interaction and anthropogenic inputs such as sewage and fertilizers. Based on the values of ${\delta}^{18}O$ and ${\delta}D$, most of waters are originated from precipitation except two samples contaminated. The lithology and geography of basins mainly control the water chemistry. Elemental and isotopic compositions show that water chemistry are mainly controlled by three end members, especially by carbonate dissolution, and suggest that anthropogenic input affect the water chemistry. Also, three weathering sources are identified: silicates, dolomite and limestone.

  • PDF

Density Distributions of Metallic Compounds in Particulate Matters (粒子狀 物質中 金屬成分의 密度分布)

  • 허문영;김형춘;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF