• Title/Summary/Keyword: Anthracnose crown rot

Search Result 6, Processing Time 0.028 seconds

Effect of Chemical Treatment on the Control of Strawberry Anthracnose caused by Colletotrichum sp. (딸기탄저병의 약제방제효과)

  • 김승한;최성용;임양숙;윤재탁;최부술
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • A total of 55 Colletotrichum isolates from strawberry plants with anthracnose symptoms(crown rot) were inhibited in mycelial growth on potato-dextrose agar(PDA) amended with fungicides in variable degrees depending on the chemicals used, especially showing no growth on PDA with 1 mg/m/tricyclazole. However, in the detached leaf test by treating chemicals before or after inoculation of Colletotrichum sp., tricyclazole was little effective in controlling symptom development; instead azoxystrobin, which had low in vitro inhibition of mycelial growth, inhibited strongly the symptom development. Some chemicals were tested for the control of strawberry crown rot in greenhouse using three methods, sprays soil drenching and plant dipping. No or little control effect were made by chemical spray and soil drenching, but plant dipping in chemical solution, especially azoxystrobin: reduced crown rot development by about 50% in the greenhouse suggesting that the azoxystrobin treatment may be an effective control method of the crown rot of strawberry. No differences in the control efficacy were noted according to the dipping time and chemical concentration of azoxystrobin not less than 10 min and 250 mg/m/, respectively.

First report of anthracnose crown rot caused by Colletotrichum siamense on strawberry in Korea

  • Myeong Hyeon Nam;Myung Soo Park;Je hyeok Yoo;Byung Joo Lee;Jong Nam Lee
    • The Korean Journal of Mycology
    • /
    • v.50 no.3
    • /
    • pp.235-241
    • /
    • 2022
  • Anthracnose crown rot (ACR) has been observed in greenhouses during the nursery and harvest seasons in Gangwon Province, Korea. Infected plants showed black leaf spot, dark sunken pink conidial masses on petioles, wilting, and eventually death. Five isolates were obtained from the lesions of strawberry plants and were identified as a Colletotrichum gloeosporioides species complex based on their cultural and morphological characteristics. Multilocus sequence analysis of actin, calmodulin, chitin synthase, glyceraldehyde-3-phophate dehydrogenase genes, and internal transcribed spacer rDNA regions showed that the isolates formed a monophyletic group with the type strain of C. siamense. Pathogenicity tests were performed on the isolate, and Koch's postulates were performed to verify the relationship between Colletotrichum sp. and the strawberry plant variety Seolhyang. The isolate was pathogenic to strawberry plants, which exhibited typical ACR symptoms. Based on morphological characteristics, pathogenicity, and DNA sequence analyses, the fungus isolated in Korea was identified as C. siamense. This is first time C. siamense has been confirmed in ever-bearing strawberry varieties in Korea.

Newly Recorded Problematic Plant Diseases in Korea and Their Causal Pathogens

  • Kwon, Jin-Hyeuk
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.25-27
    • /
    • 2003
  • Since 1993, a total of 50 problematic plant diseases unrecorded in Korea were surveyed in Gyeongnam province. Totally 34 new host plants to corresponding pathogens investigated in this study were 5 fruit trees, 9 vegetables, 12 ornamental plants, 3 industrial crops, and 5 medicinal plants. Among the newly recorded fruit tree diseases, fruit rot of pomegranate caused by Coniella granati and Rhizopus soft rot of peach caused by Rhizopus nigricans damaged severely showing 65.5% and 82.4% infection rate. Among the vegetable diseases, corynespora leaf spot of pepper caused by Corynespora cassiicola and the crown gall of pepper caused by Agrobacterium tumefaciens, powdery mildew of tomato caused by Oidiopsis taurica were the most severe revealing 47.6%, 84.7%, and 54.5% infection rate in heavily infected fields, respectively. In ornamental plants, collar rot of lily caused by Sclerotium rolfsii, gray mold of primula caused by Botrytis cinerea, soot leaf blight of dendrobium caused by Pseudocercospora dendrobium, sclerotinia rot of obedient plant caused by Sclerotinia sclerotiorum showed 32.7 to 64.8% disease incidence. On three industrial plants such as sword bean, broad bean, and cowpea, eight diseases were firstly found in this study. Among the diseases occurring on broad bean, rust caused by Uromyces viciae-fabae and red spot caused by Botrytis fabae were the major limiting factor for the cultivation of the plant showing over 64% infection rate in fields. In medicinal plants, anthracnose of safflower caused by Collectotrichum acutatum was considered the most severe disease on the plant and followed by collar rot caused by Sclerotium rolfsii.(중략)

  • PDF

The Effect of Expanded Rice Hulls as a Root Substrate on the Suppression of Anthracnose Crown Rot in Strawberry

  • Park, Gab Soon;Nam, Myeong Hyeon;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.242-248
    • /
    • 2016
  • This research was conducted to determine the effects of four different substrates, expanded rice hulls (ERH), commercial substrates for strawberries (CSS), clay sand (CS), and loamy sand (LS), on the inhibition of anthracnose crown rot (ACR) in strawberry. Mother plants of 'Seolhyang' strawberry were transplanted into an elevated bed in March, 2013 and March, 2014 and the runners connecting mother plants and daughter plants were cut in early August of both years. After separation, growth characteristics of the daughter plants were measured and then each daughter plant was inoculated with conidial suspensions of Colletotrichum fructicola, one of several species of Colletotrichum that causes ACR in strawberries. The incidence of ACR as influenced by the different substrates was investigated in both years. The daughter plants grown on CSS had the highest values for shoot height, leaf area, and fresh weight. Those grown on ERH and LS substrates also displayed good above-ground growth characteristics except for fresh weight, but the daughter plants grown on CS had the poorest above-ground growth characteristics. The ERH and CS treatments resulted in the highest number of primary roots and the greatest root weight. The CSS-grown daughter plants had the highest ACR disease index, followed by the CS and LS treatments, but there were no significant differences among the three substrates. However, the ERH-grown daughter plants had a markedly lower ACR disease index on October 11, 2013 and October 7, 2014. The CSS-grown daughter plants had high nitrogen and potassium contents and low calcium content, whereas the ERH-grown daughter plants had low nitrogen levels and high silicon levels. The results of this study provide basic information on the ability of the different substrates tested to provide disease suppression of ACR in the propagation of strawberry transplants.

Dipping Strawberry Plants in Fungicides before Planting to Control Anthracnose (딸기 탄저병 방제를 위한 정식 전 살균제 침지처리 효과)

  • Nam, Myeong Hyeon;Lee, In Ha;Kim, Hong Gi
    • Research in Plant Disease
    • /
    • v.20 no.1
    • /
    • pp.54-58
    • /
    • 2014
  • Anthracnose crown rot (ACR), caused by Colletotrichum fructicola, is a serious disease of strawberry in Korea. The primary inoculums of ACR were symptomless strawberry plants, plant debris, and other host plants. To effectively control anthracnose in symptomless transplanted strawberries, it is necessary to use disease-free plants, detect the disease early, and apply a fungicide. Therefore, in 2010 and 2011, we evaluated the efficacy of pre-plant fungicide dips by using strawberry transplants infected by C. fructicola for the control of anthracnose. Dipping plants in prochloraz-Mn for 10 min before planting was most effective for controlling anthracnose in symptomless strawberry plants and resulted in more than 76% control efficacy. Azoxystrobin showed a control efficacy of over 40%, but plants treated with pyraclostrobin, mancozeb and iminoctadine tris showed high disease severity. The control efficacy of the dip treatment with prochloraz-Mn did not differ with temperature and time. Treatment with prochloraz-Mn for more than an hour caused growth suppression in strawberry plants. Therefore, the development of anthracnose can be effectively reduced by dipping strawberry plants for 10 min in prochloraz-Mn before planting.

'Arihyang', a Strawberry Variety with Highly Firm and Large-Sized Fruit for Forcing Culture (촉성재배용 고경도 대과성 딸기 품종 '아리향')

  • Kim, Dae-Young;Kim, Seung Yu;Huh, Yun-Chan;Yoon, Moo Kyung;Lee, Sun Yi;Moon, Ji-Hye;Kim, Dae Hyun
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.497-503
    • /
    • 2018
  • A strawberry variety 'Arihyang' was derived as an artificial cross between 'Tochiotome' and 'Seolhyang' in 2014. The seedling and line selections were conducted from 2014 to 2015. Preliminary and advanced yield trials of '14-5-5,' which was the final selected line, were conducted from 2015 to 2017. 'Arihyang' is suitable for forced cultivation and has strong plant vigor, uniformly large-sized fruit, and a high yield compared to those of the check variety, 'Seolhyang' and 'Maehyang.' Especially, vitamin C was at a significant level, which was approximately 15% higher than that of 'Seolhyang.' The average number of flowers per first flower cluster was 10.5, which could reduce the labor of thinning fruit. Its fruit has a conical shape, dark red color, and glossy skin. The fruit was of good quality but has recommendations for harvest at the fully ripened stage. 'Arihyang' has intermediate resistant to phytophthora crown rot, but is susceptible to powdery mildew, gray mold, anthracnose, and fusarium wilt. It is reguired to manage major diseases and pests using optimum cultivation techniques and chemical control.