• Title/Summary/Keyword: Anthracite

Search Result 219, Processing Time 0.022 seconds

Evaluation of the Efficiency of Controlled Low-Strength Material Applied Bottom Ash of Anthracite Coal (무연탄 Bottom-ash를 적용한 저강도 고유동 충전재의 성능 평가)

  • 김성수;김동현;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.109-114
    • /
    • 2001
  • In this study, the physical and dynamic characteristics of Bottom-ash produced at steam power plants were compared and considered. The comparative objects were Bottom-ash in which a lot of powder contained and that in which less than that relatively contained. The difference in quantity of powder showed different effect on the character of flow. This study was undertaken on the use of Bottom-ash as a fine aggregate, and showed the durability and the character of strength according to each rate.

  • PDF

Combustion Properties of Anthracite Coal in Tonghae CFB combustor (동해화력 순환유동층 연소로에서의 무연탄 연소 특성)

  • 이시훈;박성희;김상돈;최정후;이종민;김재성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.81-84
    • /
    • 1999
  • 순환유동층 (Circulating Fluidized Bed : CFB) 은 기존의 기포유동층에 비하여 높은 유속에서 조업되는 반응기로, 고속의 기체와 크기가 작은 고체 입자간의 긴밀한 접촉을 통하여 비교적 대규모의 여러 가지 화학적, 물리적 작업을 수행하는 유동층기술의 한 분야이다. 순환유동층은 1940년부터 공업적으로 이용되기 시작하였으며 현재에는 가솔린의 제조, 석탄의 연소, 가스화 등에 널리 사용되고 있다.(중략)

  • PDF

Experimental Study on Evaluation of Material Properties in Cement Mortar with Pond Ash (매립회를 사용한 시멘트 모르타르의 재료 물성 평가에 대한 실험적 연구)

  • Jung, Sang Hwa;Kim, Joo Hyung;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.108-117
    • /
    • 2013
  • Among the byproducts from thermal power plant using coal combustion, fly ash as mineral admixture is widely utilized in concrete manufacturing for its engineering merits. However residuals including bottom ash are usually reclaimed. This study presents an evaluation of engineering properties in cement mortar with pond ash (PA). For this work, two types of pond ash (anthracite and bituminous coal) are selected from two reclamation sites. Cement mortar specimens considering two w/c (0.385 and 0.485) ratios and three replacement ratio of sand (0%, 30%, and 60%) are prepared and their workability, mechanical, and durability performance are evaluated. Anthracite pond ash has high absorption and smooth surface so that it shows reasonable workability, strength development, and durability performance since it has dense pore structure due to smooth surface and sufficient mixing water inside. Reuse of PA is expected to be feasible since PA cement mortar has reasonable engineering performance compared with normal cement mortar.

Desirable pH of Slurry in the Desulfurization Absorber for a 200 MW Anthracite Power Plant (200 MW급 무연탄 발전용 탈황 흡수탑에서 적정 슬러리pH)

  • Choi, Hyun-Ho;Yoo, Hoseon
    • Plant Journal
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • In this study, Seochon Thermal Power Plant No.1 for anthracite coal was tested to find the proper operation range of limestone slurry pH in the absorber tower which can be operated continuously in compliance with the Air Quality Preservation Act and Seocheon Thermal Power Division's internal regulation, sulfur dioxide average emission regulation. When operating the sulfur dioxide concentration [ppm] in the combustion gas flowing into the desulfurization absorption tower at 370, 400, 460 and 550 ppm while the main operating elements such as the flow rate of the combustion gas were fixed, the proper slurry pH Were 4.4, 4.5, 4.8 and 5.1, respectively. Therefore, it is recommended to operate with the correlation equation, RpH=0.004×Cin+2.93 derived using sulfur dioxide and the appropriate slurry pH.

A Study on the Hydraulic Experiments of Modi Khola Hydroelectric in Nepal (네팔 Modi Khola 수력발전소 수리모형실험 연구)

  • 선우중호;박창근
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.107-120
    • /
    • 1995
  • This study is concerned with the hydraulic experiments of Modi Khola Hydroelectric in Nepal. The experimental domain consists of the intake structure and the settling basin. The intake structure was made by the undistorted model with the scale of 1:20, the settling basin by the distorted model with the scale of 1:10(vertical) and 1:15(horizontal). Based on the movable bed model theory, the 'Anthracite'($\rho_s$ =1.48) is chosen as a model material. According to the model tests, the installation of the guide wall with proper height and the proper control of the flushing gate are required for the effective flushing in the intake structure. In the settling basin a more proper design of the inlet in order to constrain the turbulence flow is required for an efficient sedimentation and the installation of another flushing pipe near the maximum sedimental area is required. Since the trap efficiency is measured about 95%, it is concluded that the design of the settling basin is proper.

  • PDF

Effect of Fly Ash on Productivity of Tomato and Improvement of Soil (토마토 생산성과 토양개량에 미치는 석탄회 시용의 영향)

  • Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.93-98
    • /
    • 2007
  • In the present experiment, fly ash application to soil generally improved soil pH condition. The improvement of soil pH was greater with bituminous fly ash than with anthracite fly ash. Treatment of fly ash also made available phosphate content increased. But phosphate content in cultivated tomato plants was in inverse proportion to content in soil due to high pH of experimental soil as well as hot and dry weather. Amount of phosphate in plants had a strong positive effect on the yield of tomato. Number and weight of harvested fruits was greatest from July 21 to July 30, the time considered as peak harvesting period of second fruit truss. In conclusion, the application of fly ash improved physico-chemical properties of experimental soil.

Reduction of Suspended Solids in First Flush from a Building Rooftop using Various Media (여과재를 활용한 건물옥상유출 초기빗물의 부유물질 저감)

  • Kim, Seongbeom;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.4
    • /
    • pp.214-219
    • /
    • 2017
  • We analyzed the water quality of first flush and rainfall runoff from a building rooftop, and investigated the removal of suspended solids (SS) in first flush using various media to develop a first flush filtration system. Particle size distribution exhibited most of particles in first flush from the rooftop ranged from 10 to 30 ${\mu}m$. SS concentrations maxed in 10~20 min and decreased afterwards. Dissolved organics and inorganic materials in runoff also showed highest levels in first flush (10 min). Filtration tests using anthracite (AC), polyurethane (PU), polypropylene (PP) showed about 50% of SS removal during the first 10 min operation, but the removal rates dramatically decreased after 20 min of filtration. Based upon the results from rinse and run cycle tests, only AC could achieve nice cycles without distinct decease of SS removal. SS removal rates increased with higher depth of media bed and lower flowrate. The system achieved over 50% of SS removal with a media depth of 30 cm and flowrate < 12 L/min.

A Study of Chemical Properties and Fusibility of Korean Anthracite Coal Ash (국내 무연탄회의 화학조성 및 용융특성에 관한 연구)

  • Park, Cheol-Woo;Lee, See-Hoon;Shon, Eung-Kwon
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.433-441
    • /
    • 1992
  • Chemical composition and fusibility of coal ash were measured for 23 Korean anthracite coals. The relationship between chemical properties and fusion temperature of coal ash was investigated. The slagging and fouling in firing the pulverized coal for boiler was assessed for the coal samples. It was found that most ashes contained more than 80% of $SiO_2$ and $Al_2O_3$ whereas less than 1% of $Na_2O$. And also fusion temperature of ashes occured relatively higher for Korean coals. Therefore it can be predictable that the slagging and fouling formation has a little problem in a pulverized coal firing system. A base/acid ratio did show a good correlation with fusion temperature for these coal ashes.

  • PDF

A Study on Emission Characteristics of Mercury from Coal Combustion at a Lab-scale Furnace (실험용 연소로에서 석탄 연소 시 발생하는 수은 배출특성 연구)

  • Park, Kyu-Shik;Lee, Ju-Hyoung;Kim, Jeong-Hun;Lee, Sang-Hyeob;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.238-248
    • /
    • 2008
  • This study investigated mercury emission at various combustion conditions and analyzed mercury species in flue gas from coal combustion at a laboratory scale furnace in coal. The results of this study can be used to predict and to assess mercury emission at coal boilers and power plants. The coal used in the plants generally contains about $0.02{\sim}0.28\;mg$ of mercury per kg. Bituminous and anthracite coal used for the experiment contained 0.049 and 0.297 mg/kg of mercury, respectively. Mercury emissions during coal combustion at temperatures range of $600^{\circ}C$ to $1,400^{\circ}C$ was measured and analysed using Ontario Hydro method; the speciation changes were also observed in mercury emissions. The results showed higher fraction of elemental mercury than that of oxidised mercury at most temperatures tested in this experiment. The fraction of elemental mercury was lower in combustion of anthracite coal than in bituminous combustion. As expected, equilibrium calculations and real power plants data showed good similarity. The distribution of particle size in flue gas had the higher peak in size above $2.5\;{\mu}m$. However the peak of mercury enrichment in dust was at $0.3\;{\mu}m$, which could be easily emitted into atmosphere without filtration in combustion system. When the CEA(Chemical equilibrium and Application) code was used for combustion equilibrium calculation, Cl was found to be the important component effecting mercury oxidation, especially at the lower temperatures under $900^{\circ}C$.

A Study on the Development of the Mercury Emission Factor from Coal-fired Power Plant (석탄 화력발전시설에서의 수은 배출계수 개발에 관한 연구)

  • Kim, Hyung-Chun;Park, Jung-Min;Jang, Kee-Won;Lee, Sang-Bo;Jung, No-El;Song, Deok-Jong;Hong, Ji-Hyung;Lee, Suk-Jo;Kim, Sang-Kyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.172-181
    • /
    • 2012
  • Mercury is one of the most hazardous air pollutants. Recently, mercury has been a concern in domestic and overseas because it has lethal toxicity, long distance transport, persistence and bioaccumulation in the environment. Stationary combustion sources such as coal-fired power plants, waste incinerators, and cement kilns are the major sources of mercury emissions. The objectives of this study were to measure the concentration for mercury from coal-fired power plants and to calculate emission factor to estimate its emission. The results showed that the mercury concentrations in the flue gas were 1.63-3.03 mg/$Sm^3$ in anthracite-fired power plants (average 2.32 mg/$Sm^3$) and 1.95-3.33 mg/$Sm^3$ in bituminous-fired power plants (average 2.6 mg/$Sm^3$). Mercury emission factor was estimated as 25.74 mg/ton for anthracite-fired power plants and 12.48 mg/ton for bituminous-fired power plants. Because actual measurements are limited in quantity, it is desirable to refine our estimates by extending the actual measurements.